Gamma Radiation-Induced Unsaturated P(VDF-CTFE) Membranes with Improved Mechanical Properties
Huazhao Wang A B , Yu Liu B , Yaoxin Xiao B , Jiafu Chen C , Jinjiang Xu B , Haobin Zhang B , Jie Sun B , Jie Li B , Chunhua Zhu B E , Jihu Su D E and Feng Liu A EA Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
B Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China.
C Division of Nanomaterials and Chemistry Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.
D Department of Modern Physics, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China.
E Corresponding authors. Email: chzhu@caep.cn; sujihu@ustc.edu.cn; liufeng@zzu.edu.cn
Australian Journal of Chemistry 74(5) 327-334 https://doi.org/10.1071/CH20280
Submitted: 21 September 2020 Accepted: 30 November 2020 Published: 22 December 2020
Abstract
Poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDF-CTFE)) membranes were prepared by drop-casting with tetrahydrofuran (THF), and were then radiated by a low dose of gamma radiation without any other reagents. The apparent colour of the freshly prepared film was a semi-transparent white, which gradually darkened and finally turned black after 10.2 kGy gamma radiation. Meanwhile, the yield and breaking strength of the membrane both improved. X-Ray diffraction (XRD) spectra showed that the structure of the microcrystal of the irradiated P(VDF-CTFE)-THF membrane was not changed. FT-IR analysis showed that the structure of the newly formed double bonds was dominated by –CF2–CF=CH–CF2–, which was formed by both dehydrofluorination and dehydrochlorination. This structure was further confirmed by 1H NMR spectra. The intermediates, such a radical-containing double bonds (–(CF=CH)n–C•F–) formed in this process were traced by electron paramagnetic resonance (EPR) spectroscopy. The thermal and mechanical properties were studied by gel permeation chromatography (GPC), thermogravimetric analysis (TGA), stress–strain and dynamic mechanical analysis (DMA), and all the changes of microstructure and optimization of apparent properties were not found in the corresponding membrane prepared by a solution-cast method with ethyl acetate (EtOAc). Therefore, this paper briefly analyses the probable mechanism of using low dose of gamma radiation to improve the mechanical properties of the P(VDF-CTFE) film prepared with THF.
References
[1] F. Boschet, B. Ameduri, Chem. Rev. 2014, 114, 927.| Crossref | GoogleScholarGoogle Scholar | 24229048PubMed |
[2] B. Ameduri, B. Boutevin, G. Kostov, Prog. Polym. Sci. 2001, 26, 105.
| Crossref | GoogleScholarGoogle Scholar |
[3] Z. Cui, E. Drioli, Y. M. Lee, Prog. Polym. Sci. 2014, 39, 164.
| Crossref | GoogleScholarGoogle Scholar |
[4] T. R. Dargaville, G. A. George, A. K. Whittaker, Prog. Polym. Sci. 2003, 28, 1355.
| Crossref | GoogleScholarGoogle Scholar |
[5] P. Bei, H. Liu, H. Yao, Y. Jiao, Y. Wang, L. Guo, Aust. J. Chem. 2017, 200, 169.
[6] T. F. Garrison, M. R. Kessler, R. C. Larock, Polymer 2014, 55, 1004.
| Crossref | GoogleScholarGoogle Scholar |
[7] S. Tan, J. Li, G. Gao, H. Li, Z. Zhang, J. Mater. Chem. 2012, 22, 18496.
| Crossref | GoogleScholarGoogle Scholar |
[8] G. J. Ross, J. F. Watts, M. P. Hill, P. Morrissey, Polymer 2000, 41, 1685.
| Crossref | GoogleScholarGoogle Scholar |
[9] X. Hu, S. Tan, G. Gao, Y. Xie, Q. Wang, N. Li, Z. Zhang, J. Polym. Sci., Part A Polym. Chem. 2014, 52, 3429.
| Crossref | GoogleScholarGoogle Scholar |
[10] A. G. Chmielewski, M. Haji-Saeid, S. Ahmed, Nucl. Instrum. Methods Phys. Res. B 2005, 236, 44.
| Crossref | GoogleScholarGoogle Scholar |
[11] A. Bhattacharya, Prog. Polym. Sci. 2000, 25, 371.
| Crossref | GoogleScholarGoogle Scholar |
[12] R. L. Clough, Nucl. Instrum. Methods Phys. Res. B 2001, 185, 8.
| Crossref | GoogleScholarGoogle Scholar |
[13] M. A. Masuelli, M. Grasselli, J. Marchese, N. A. Ochoa, J. Membr. Sci. 2012, 389, 91.
| Crossref | GoogleScholarGoogle Scholar |
[14] L. Li, B. Deng, Y. Ji, Y. Yu, L. Xie, J. Li, X. Lu, J. Membr. Sci. 2010, 346, 113.
| Crossref | GoogleScholarGoogle Scholar |
[15] N. Yao, J. Chau, E. Elele, B. Khusid, K. K. Sirkar, D. J. Dehn, J. Membr. Sci. 2017, 532, 89.
| Crossref | GoogleScholarGoogle Scholar |
[16] S. E. Evsyukov, B. Thomas, R. B. Heimann, Mater. Chem. Phys. 2000, 66, 34.
| Crossref | GoogleScholarGoogle Scholar |
[17] H. Shinohara, J. Polym. Sci. Polym. Chem. Ed. 1979, 17, 1543.
| Crossref | GoogleScholarGoogle Scholar |
[18] J. Li, Y. Ji, J. Chang, N. Tian, L. Song, L. Chen, L. Li, Polymer 2017, 119, 107.
| Crossref | GoogleScholarGoogle Scholar |
[19] Z. Mencik, J. Polym. Sci., Part B Polym. Phys. 1973, 11, 1585.
| Crossref | GoogleScholarGoogle Scholar |
[20] I. Sugimoto, M. Nakamura, N. Kasai, T. Katoh, Polymer 2000, 41, 511.
| Crossref | GoogleScholarGoogle Scholar |
[21] D. M. Correia, N.-P. Joã, D. Alikin, A. L. Kholkin, S. A. C. Carabineiro, L. Rebouta, M. S. Rodrigues, F. Vaz, C. M. Costa, L.-M. Senentxu, Polymer 2019, 169, 138.
| Crossref | GoogleScholarGoogle Scholar |
[22] Z. Tan, C. Fu, Y. Gao, J. Qian, W. Li, X. Wu, H. Chu, C. Chen, W. Nie, X. Ran, Radiat. Phys. Chem. 2018, 153, 258.
| Crossref | GoogleScholarGoogle Scholar |
[23] A. Fina, A. Le Moel, J. P. Duraud, M. T. Valin, C. Le Gressus, Nucl. Instrum. Methods Phys. Res. 1989, 42, 69.
| Crossref | GoogleScholarGoogle Scholar |
[24] Z. Y. Yang, J. Org. Chem. 2003, 68, 5419.
| Crossref | GoogleScholarGoogle Scholar | 12816513PubMed |
[25] J. S. Forsythe, D. J. T. Hill, Prog. Polym. Sci. 2000, 25, 101.
| Crossref | GoogleScholarGoogle Scholar |
[26] T. Koga, K. Tomimori, N. Higashi, Macromol. Rapid Commun. 2020, 41, 1900650.
| Crossref | GoogleScholarGoogle Scholar | 32078206PubMed |
[27] X. L. Niu, F. F. Wang, X. Kui, R. C. Zhang, X. L. Wang, X. H. Li, T. H. Chen, P. C. Sun, A.-C. Shi, Macromol. Rapid Commun. 2019, 40, 1900313.
| Crossref | GoogleScholarGoogle Scholar |
[28] Z. Zhen, Radiat. Phys. Chem. 1990, 35, 423.
[29] Y. Rosenberg, A. Siegmann, M. Narkis, S. Shkolnik, J. Appl. Polym. Sci. 1992, 45, 783.
| Crossref | GoogleScholarGoogle Scholar |
[30] K. Makuuchi, M. Asano, T. Abe, J. Polym. Sci., Part A Polym. Chem. 1976, 14, 617.
| Crossref | GoogleScholarGoogle Scholar |
[31] L. Dumas, B. Albela, L. Bonneviot, D. Portinha, E. Fleury, Radiat. Phys. Chem. 2013, 86, 102.
| Crossref | GoogleScholarGoogle Scholar |
[32] R. L. Benevenuto, W. A. Alves, J. Raman Spectrosc. 2008, 39, 490.
| Crossref | GoogleScholarGoogle Scholar |
[33] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176.
| Crossref | GoogleScholarGoogle Scholar |