Immobilisation of Homogeneous Pd Catalysts within a Type I Porous Liquid*
Ellen B. Hemming A , Anthony F. Masters A and Thomas Maschmeyer A BA Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
B Corresponding author. Email: thomas.maschmeyer@sydney.edu.au
Australian Journal of Chemistry 73(12) 1296-1300 https://doi.org/10.1071/CH20256
Submitted: 24 August 2020 Accepted: 28 October 2020 Published: 10 November 2020
Abstract
An N-heterocyclic carbene-based palladium complex was successfully immobilised on the inner surfaces of hollow silica nanospheres. The external surfaces of these spheres were functionalised with a corona-canopy to produce a Type I porous liquid. To confirm the successful immobilisation of the catalytic precursor, the porous liquid system was explored using the Heck reaction as a model reaction. This work demonstrated that homogeneous catalysts can be successfully immobilised within porous liquids in principle and that the approach used could be readily adapted for the immobilisation of other systems.
References
[1] N. O’Reilly, N. Giri, S. L. James, Chem. – Eur. J. 2007, 13, 3020.| Crossref | GoogleScholarGoogle Scholar | 17351993PubMed |
[2] S. L. James, Adv. Mater. 2016, 28, 5712.
| Crossref | GoogleScholarGoogle Scholar | 27002308PubMed |
[3] A. I. Cooper, ACS Cent. Sci. 2017, 3, 544.
| Crossref | GoogleScholarGoogle Scholar | 28691065PubMed |
[4] A. Bavykina, A. Cadiau, J. Gascon, Coord. Chem. Rev. 2019, 386, 85.
| Crossref | GoogleScholarGoogle Scholar |
[5] E. B. Hemming, A. F. Masters, T. Maschmeyer, Chem. Commun. 2019, 11179.
| Crossref | GoogleScholarGoogle Scholar |
[6] E. B. Hemming, A. F. Masters, T. Maschmeyer, Chem. – Eur. J. 2020, 26, 7059.
| Crossref | GoogleScholarGoogle Scholar | 32011774PubMed |
[7] D. J. Cole-Hamilton, Science 2003, 299, 1702.
| Crossref | GoogleScholarGoogle Scholar | 12637737PubMed |
[8] S. Hübner, J. G. de Vries, V. Farina, Adv. Synth. Catal. 2016, 358, 3.
| Crossref | GoogleScholarGoogle Scholar |
[9] P. McMorn, G. J. Hutchings, Chem. Soc. Rev. 2004, 33, 108.
| Crossref | GoogleScholarGoogle Scholar | 14767506PubMed |
[10] K. G. Allum, R. D. Hancock, I. V. Howell, R. C. Pitkethly, P. J. Robinson, J. Organomet. Chem. 1975, 87, 189.
| Crossref | GoogleScholarGoogle Scholar |
[11] K. G. Allum, R. D. Hancock, I. V. Howell, S. McKenzie, R. C. Pitkethly, P. J. Robinson, J. Organomet. Chem. 1975, 87, 203.
| Crossref | GoogleScholarGoogle Scholar |
[12] R. Zhong, A. C. Lindhorst, F. J. Groche, F. E. Kuhn, Chem. Rev. 2017, 117, 1970.
| Crossref | GoogleScholarGoogle Scholar | 28085269PubMed |
[13] E. A. B. Kantchev, C. J. O’Brien, M. G. Organ, Angew. Chem. Int. Ed. 2007, 46, 2768.
| Crossref | GoogleScholarGoogle Scholar |
[14] K. V. S. Ranganath, S. Onitsuka, A. K. Kumar, J. Inanaga, Catal. Sci. Technol. 2013, 3, 2161.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. S. Zhang, S. H. Chai, Z. A. Qiao, S. M. Mahurin, J. H. Chen, Y. X. Fang, S. Wan, K. Nelson, P. F. Zhang, S. Dai, Angew. Chem. Int. Ed. 2015, 54, 932.
| Crossref | GoogleScholarGoogle Scholar |
[16] P. D. Stevens, J. Fan, H. M. R. Gardimalla, M. Yen, Y. Gao, Org. Lett. 2005, 7, 2085.
| Crossref | GoogleScholarGoogle Scholar | 15901140PubMed |
[17] L. B. Capeletti, I. M. Baibich, I. S. Butler, J. H. Z. dos Santos, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 133, 619.
| Crossref | GoogleScholarGoogle Scholar | 24992921PubMed |
[18] E. R. Talaty, S. Raja, V. J. Storhaug, A. Dölle, W. R. Carper, J. Phys. Chem. B 2004, 108, 13177.
| Crossref | GoogleScholarGoogle Scholar |
[19] Z. Cheng, X. Zhu, E. T. Kang, K. G. Neoh, Macromolecules 2006, 39, 1660.
| Crossref | GoogleScholarGoogle Scholar |
[20] M. Wilson, R. Kore, A. W. Ritchie, R. C. Fraser, S. K. Beaumont, R. Srivastava, J. P. S. Badyal, Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 78.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. Ulbrich, M. Reinmöller, W. J. D. Beenken, S. Krischok, J. Mol. Liq. 2014, 192, 77.
| Crossref | GoogleScholarGoogle Scholar |
[22] D.-H. Lee, J.-H. Kim, B.-H. Jun, H. Kang, J. Park, Y.-S. Lee, Org. Lett. 2008, 10, 1609.
| Crossref | GoogleScholarGoogle Scholar | 18351771PubMed |
[23] N. T. S. Phan, M. Van Der Sluys, C. W. Jones, Adv. Synth. Catal. 2006, 348, 609.
| Crossref | GoogleScholarGoogle Scholar |
[24] M. Nowotny, U. Hanefeld, H. v. Koningsveld, T. Maschmeyer, Chem. Commun. 2000, 1877.
| Crossref | GoogleScholarGoogle Scholar |
[25] M. Bakherad, A. Keivanloo, S. Samangooei, Tetrahedron Lett. 2012, 53, 5773.
| Crossref | GoogleScholarGoogle Scholar |
[26] J. Zhang, G.-F. Zhao, Z. Popović, Y. Lu, Y. Liu, Mater. Res. Bull. 2010, 45, 1648.
| Crossref | GoogleScholarGoogle Scholar |
[27] J. Sherwood, J. H. Clark, I. J. S. Fairlamb, J. M. Slattery, Green Chem. 2019, 21, 2164.
| Crossref | GoogleScholarGoogle Scholar |
[28] S. Chandrasekhar, C. Narsihmulu, S. S. Sultana, N. R. Reddy, Org. Lett. 2002, 4, 4399.
| Crossref | GoogleScholarGoogle Scholar | 12465897PubMed |
[29] A. V. Astakhov, O. V. Khazipov, A. Y. Chernenko, D. V. Pasyukov, A. S. Kashin, E. G. Gordeev, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Organometallics 2017, 36, 1981.
| Crossref | GoogleScholarGoogle Scholar |