Studies on Thiourea Catalysed Bromocycloetherification and Bromolactonisations*
Venkatachalam Pitchumani A and David W. Lupton A BA School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
B Corresponding author. Email: david.lupton@monash.edu
Australian Journal of Chemistry 73(12) 1292-1295 https://doi.org/10.1071/CH20184
Submitted: 5 June 2020 Accepted: 30 July 2020 Published: 1 September 2020
Abstract
Lewis base catalysed halofunctionalisation reactions of alkenes are well established and allow access to, among others, various oxygen containing heterocycles. By exploiting the known conversion of N-heterocyclic carbenes into the corresponding thioureas it has been possible to prepare and study a range of chiral and non-chiral Lewis base catalysts for such reactions. Although all thiourea catalysts were found to mediate bromocycloetherification and bromolactonisation reactions, they could not be achieved with enantioselectivity.
References
[1] (a) For selected reviews see: M. D. Dowle, D. I. Davies, Chem. Soc. Rev. 1979, 8, 171.| Crossref | GoogleScholarGoogle Scholar |
(b) A. N. French, S. Bissmire, T. Wirth, Chem. Soc. Rev. 2004, 33, 354.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. E. Denmark, W. E. Kuester, M. T. Burk, Angew. Chem. Int. Ed. 2012, 51, 10938.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. Murai, H. Fujioka, Heterocycles 2013, 87, 763.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. A. Cheng, W. Z. Yu, Y.-Y. Yeung, Org. Biomol. Chem. 2014, 12, 2333.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) For selected examples see: O. Kitagawa, T. Hanano, K. Tanabe, M. Shiro, T. Taguchi, J. Chem. Soc. Chem. Commun. 1992, 1005.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Sakakura, A. Ukai, K. Ishihara, Nature 2007, 445, 900.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. E. Veitch, E. N. Jacobsen, Angew. Chem. Int. Ed. 2010, 49, 7332.
| Crossref | GoogleScholarGoogle Scholar |
(d) W. Zhang, S. Zheng, N. Liu, J. B. Werness, I. A. Guzei, W. Tang, J. Am. Chem. Soc. 2010, 132, 3664.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. E. Tungen, J. M. J. Nolsøe, T. V. Hansen, Org. Lett. 2012, 14, 5884.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. C. Dobish, J. N. Johnston, J. Am. Chem. Soc. 2012, 134, 6068.
| Crossref | GoogleScholarGoogle Scholar |
(g) D. H. Paull, C. Fang, J. R. Donald, A. D. Pansick, S. F. Martin, J. Am. Chem. Soc. 2012, 134, 11128.
| Crossref | GoogleScholarGoogle Scholar |
(h) C. B. Tripathi, S. Mukherjee, Angew. Chem. Int. Ed. 2013, 52, 8450.
| Crossref | GoogleScholarGoogle Scholar |
(i) M. Wilking, C. Mück-Lichtenfeld, C. G. Daniliuc, U. Hennecke, J. Am. Chem. Soc. 2013, 135, 8133.
| Crossref | GoogleScholarGoogle Scholar |
(j) Z. Ke, C. K. Tan, F. Chen, Y.-Y. Yeung, J. Am. Chem. Soc. 2014, 136, 5627.
| Crossref | GoogleScholarGoogle Scholar |
(k) J. D. Griffin, C. L. Cavanaugh, D. A. Nicewicz, Angew. Chem. Int. Ed. 2017, 56, 2097.
| Crossref | GoogleScholarGoogle Scholar |
(l) S. Einaru, K. Shitamichi, T. Nagano, A. Matsumoto, K. Asano, S. Matsubara, Angew. Chem. Int. Ed. 2018, 57, 13863.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) See for example: R. B. Grossman, R. J. Trupp, Can. J. Chem. 1998, 76, 1233.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Haas, S. Piguel, T. Wirth, Org. Lett. 2002, 4, 297.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Haas, S. Bissmire, T. Wirth, Chem. – Eur. J. 2005, 11, 5777.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) For discussions regarding the tuning of NHC reactivity see: B. Maji, M. Breugst, H. Mayr, Angew. Chem. Int. Ed. 2011, 50, 6915.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Levens, F. An, M. Breugst, H. Mayr, D. W. Lupton, Org. Lett. 2016, 18, 3566.
| Crossref | GoogleScholarGoogle Scholar |
(c) For selected studies in which the N-aryl group plays a significant role in reaction outcome see: J. Mahatthananchai, J. W. Bode, Chem. Sci. 2012, 3, 192.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. J. Collett, R. S. Massey, J. E. Taylor, O. R. Maguire, A. C. O’Donoghue, A. D. Smith, Angew. Chem. Int. Ed. 2015, 54, 6887.
| Crossref | GoogleScholarGoogle Scholar |
[5] For the conversion of NHCs to thioureas see: T. K. Das, A. T. Biju, Eur. J. Org. Chem. 2017, 4500.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) Thioureas have been examined as enantioselective catalysts previously: C. K. Tan, F. Chen, Y.-Y. Yeung, Tetrahedron Lett. 2011, 52, 4892.
| Crossref | GoogleScholarGoogle Scholar |
(b) In addition cyclic thioureas have been used in none enantioselective reaction designs: T. Horibe, Y. Tsuji, K. Ishihara, ACS Catal. 2018, 8, 6362.
| Crossref | GoogleScholarGoogle Scholar |
[7] For a comprehensive review on NHC catalysis that highlights such paucity see: D. M. Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev. 2015, 115, 9307.
| Crossref | GoogleScholarGoogle Scholar | 25992594PubMed |
[8] This type of cyclisation was first reported by T. Gottwald, M. Greb, J. Hartung, Synlett 2004, 1, 65.
| Crossref | GoogleScholarGoogle Scholar |
[9] This type of cyclisation was first reported by: S. E. Denmark, M. T. Burk, Proc. Natl. Acad. Sci. USA 2010, 107, 20655.
| Crossref | GoogleScholarGoogle Scholar | 20705900PubMed |
[10] For example see: C. K. Tan, C. Le, Y.-Y. Yeung, Chem. Commun. 2012, 48, 5793.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) For example see: X. Jiang, C. K. Tan, L. Zhou, Y.-Y. Yeung, Angew. Chem. Int. Ed. 2012, 51, 7771.
| Crossref | GoogleScholarGoogle Scholar |
(b) K. Murai, T. Matsushita, A. Nakamura, S. Fukushima, M. Shimura, H. Fujioka, Angew. Chem. Int. Ed. 2010, 49, 9174.and references [2b] and [2c]
| Crossref | GoogleScholarGoogle Scholar |