Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis, Characterisation, and Determination of Physical Properties of New Two-Protonic Acid Ionic Liquid and its Catalytic Application in the Esterification

Zohreh Shahnavaz A , Lia Zaharani A , Nader Ghaffari Khaligh https://orcid.org/0000-0001-9585-9253 A C , Taraneh Mihankhah B and Mohd Rafie Johan A
+ Author Affiliations
- Author Affiliations

A Nanotechnology and Catalysis Research Center, 3rd Floor, Block A, Institute of Postgraduate Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia.

B Environmental Research Laboratory, Department of Water and Environmental Engineering, School of Civil Engineering, Iran University of Science and Technology, 16765-163, Tehran, Iran.

C Corresponding author. Email: ngkhaligh@um.edu.my

Australian Journal of Chemistry 74(3) 165-172 https://doi.org/10.1071/CH20153
Submitted: 9 May 2020  Accepted: 15 July 2020   Published: 28 August 2020

Abstract

A new ionic liquid was synthesised, and its chemical structure was elucidated by FT-IR, 1D NMR, 2D NMR, and mass analyses. Some physical properties, thermal behaviour, and thermal stability of this ionic liquid were investigated. The formation of a two-protonic acid salt namely 4,4′-trimethylene-N,N′-dipiperidinium sulfate instead of 4,4′-trimethylene-N,N′-dipiperidinium hydrogensulfate was evidenced by NMR analyses. The catalytic activity of this ionic liquid was demonstrated in the esterification reaction of n-butanol and glacial acetic acid under different conditions. The desired acetate was obtained in 62–88 % yield without using a Dean–Stark apparatus under optimal conditions of 10 mol-% of the ionic liquid, an alcohol to glacial acetic acid mole ratio of 1.3 : 1.0, a temperature of 75–100°C, and a reaction time of 4 h. α-Tocopherol (α-TCP), a highly efficient form of vitamin E, was also treated with glacial acetic acid in the presence of the ionic liquid, and O-acetyl-α-tocopherol (Ac-TCP) was obtained in 88.4 % yield. The separation of esters was conducted during workup without the utilisation of high-cost column chromatography. The residue and ionic liquid were used in subsequent runs after the extraction of desired products. The ionic liquid exhibited high catalytic activity even after five runs with no significant change in its chemical structure and catalytic efficiency.


References

[1]  J. Otera, J. Nishikido, Esterification: Methods, Reactions, and Applications, 2nd edn 2009 (Wiley-VCH: Weinheim).

[2]  P. Siengalewicz, J. Mulzer, U. Rinner, in Comprehensive Organic Synthesis, 2nd edn (Eds P. Knochel, G. A. Molander) 2014, Vol. 6, pp. 355–410 (Elsevier: Amsterdam).

[3]  K. H. C. Baser, G. Buchbauer, Handbook of Essential Oils: Science, Technology, and Applications 2010 (CRC Press: Boca Raton, FL).

[4]  T. Kartika, N. Shimizu, T. Yoshimura, PLoS One 2015, 10, e0141799.
         | Crossref | GoogleScholarGoogle Scholar | 26544984PubMed |

[5]  K. Matsumoto, R. Yanagi, Y. Oe, in Carboxylic Acid: Key Role in Life Sciences (Eds G. I. Badea, G. L. Radu) 2018, pp. 7–34 (IntechOpen: London).

[6]  See pp. 3753–3764 in: R. C. Larock, Comprehensive Organic Transformations: A Guide to Functional Group Preparations, Volume 1 1999 (Wiley-VCH: New York, NY).

[7]  J. Keogh, M. S. Tiwari, H. Manyar, Ind. Eng. Chem. Res. 2019, 58, 17235.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  C. Zhang, G. Zhang, S. Luo, C. Wang, H. Li, Org. Biomol. Chem. 2018, 16, 8467.
         | Crossref | GoogleScholarGoogle Scholar | 30371718PubMed |

[9]  M. M. Dell’Anna, V. F. Capodiferro, M. Mali, P. Mastrorilli, J. Organomet. Chem. 2016, 818, 106.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  A. Furuta, T. Fukuyama, I. Ryu, Bull. Chem. Soc. Jpn. 2017, 90, 607.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  Z. Chen, Y. Wen, Y. Fu, H. Chen, M. Ye, G. Luo, Synlett 2017, 28, 981.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  Z. Radai, N. Z. Kiss, G. Keglevich, Curr. Org. Chem. 2018, 22, 533.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  B. Dong, H. Song, W. Zhang, A. He, S. Yao, Curr. Org. Chem. 2016, 20, 2894.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  D. Bezbradica, M. Crovic, S. J. Tanaskovic, N. Lukovic, M. Carevic, A. Milivojevic, Z. Knezevic-Jugovic, Curr. Org. Chem. 2017, 21, 104.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  X. Hu, K. Ma, A. Sabbaghi, X. Chen, A. Chatterjee, F. L. Y. Lam, Mol. Catal. 2020, 482, 110635.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S. Zhou, X. Liu, J. Lai, M. Zheng, W. Z. Liu, Q. Xu, D. Yin, Chem. Eng. J. 2019, 361, 571.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  J. Dupont, T. Itoh, P. Lozano, S. Malhotra, Environmentally Friendly Syntheses Using Ionic Liquids 2019 (CRC Press: Boca Raton, FL).

[18]  F. J. H. Fernández, A. P. de los Ríos, J. Quesada‐Medina, S. Sánchez‐Segado, ChemBioEng Rev. 2015, 2, 44.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  J. P. Hallett, T. Welton, Chem. Rev. 2011, 111, 3508.
         | Crossref | GoogleScholarGoogle Scholar | 21469639PubMed |

[20]  M. Przypis, K. Matuszek, A. Chrobok, M. Swadźba-Kwaśny, D. Gillner, J. Mol. Liq. 2020, 308, 113166.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  K. Matuszek, A. Chrobok, F. Coleman, K. R. Seddon, M. Swadźba-Kwaśny, Green Chem. 2014, 16, 3463.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  U. Dorosz, N. Barteczko, P. Latos, K. Erfurt, E. Pankalla, A. Chrobok, Catalysts 2020, 10, 37.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  C. Chiappe, S. Rajamania, F. D’Andrea, Green Chem. 2013, 15, 137.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  N. G. Khaligh, T. Mihankhah, M. R. Johan, Polycycl. Arom. Comp. 2019,
         | Crossref | GoogleScholarGoogle Scholar |

[25]  N. G. Khaligh, T. Mihankhah, M. R. Johan, J. Mol. Liq. 2019, 277, 794.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  N. G. Khaligh, T. Mihankhah, M. R. Johan, Res. Chem. Intermed. 2019, 45, 3291.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  T. Belhocine, S. A. Forsyth, H. Q. N. Gunaratne, M. Nieuwenhuyzen, P. Nockemann, A. V. Puga, K. R. Seddon, G. Srinivasan, K. Whiston, Phys. Chem. Chem. Phys. 2015, 17, 10398.
         | Crossref | GoogleScholarGoogle Scholar | 25669485PubMed |

[28]  R. A. Heacock, L. Marion, Can. J. Chem. 1956, 34, 1782.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  M. F. Erben, C. O. Della Ve’dova, R. Boese, H. Willner, C. Leibold, H. Oberhammer, Inorg. Chem. 2003, 42, 7297.
         | Crossref | GoogleScholarGoogle Scholar | 14577800PubMed |

[30]  K. N. Prasad, B. Kumar, X. D. Yan, A. J. Hanson, W. C. Cole, J. Am. Coll. Nutr. 2003, 22, 108.
         | Crossref | GoogleScholarGoogle Scholar | 12672706PubMed |

[31]  P. Torres, D. Reyes-Duarte, N. Lopez-Cortes, M. Ferrer, A. Ballesteros, F. J. Plou, Process Biochem. 2008, 43, 145.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  N. G. Khaligh, Monatsh. Chem. 2014, 145, 1643.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  N. G. Khaligh, K. F. Chong, T. Mihankhah, S. Titinchi, M. R. Johan, J. J. Ching, Aust. J. Chem. 2018, 71, 566.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  J. K. Baker, C. W. Myers, Pharm. Res. 1991, 8, 763.
         | Crossref | GoogleScholarGoogle Scholar | 2062807PubMed |

[35]  N. G. Khaligh, T. Mihankhah, M. R. Johan, J. J. Ching, Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 866.
         | Crossref | GoogleScholarGoogle Scholar |