Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Facile Microwave and SnCl2 Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones

Nicholas S. O’Brien A and Adam McCluskey https://orcid.org/0000-0001-7125-863X A B
+ Author Affiliations
- Author Affiliations

A Chemistry, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.

B Corresponding author. Email: adam.mccluskey@newcastle.edu.au

Australian Journal of Chemistry 73(12) 1176-1186 https://doi.org/10.1071/CH20101
Submitted: 25 March 2020  Accepted: 6 July 2020   Published: 24 September 2020

Abstract

An elegantly simple, facile, and robust approach to a scaffold of biological importance, 2,3-dihydroquinazolin-4(1H)-ones, is reported. A catalytic 1 % SnCl2/microwave-mediated approach afforded access to pure material, collected by cooling and filtration after 20-min microwave irradiation at 120°C. A total of 41 analogues were prepared in isolated yields of 17–99 %. This process was highly tolerant of aliphatic, aromatic, heterocyclic, and acyclic aldehydes, but furan, pyrrole, and thiophene aldehyde reactivity correlated with propensity towards electrophilic addition and/or Diels–Alder addition. As a result, thiophene afforded high yields (80 %) whereas pyrrole carboxaldehyde failed to react. With simple cinnamaldehydes, and in the SbCl3-mediated reaction, and with α,β-unsaturated aldehydes the equivalent quinazolin-4(3H)-ones, and not the 2,3-dihydroquinazolin-4(1H)-ones, was favoured.


References

[1]  C. B. Harper, M. R. Popoff, A. McCluskey, P. J. Robinson, F. A. Meunier, Trends Cell Biol. 2013, 23, 90.
         | Crossref | GoogleScholarGoogle Scholar | 23164733PubMed |

[2]  M. J. Robertson, F. M. Deane, P. J. Robinson, A. McCluskey, Nat. Protoc. 2014, 9, 851.
         | Crossref | GoogleScholarGoogle Scholar | 24651498PubMed |

[3]  M. J. Robertson, F. M. Deane, P. J. Robinson, V. Haucke, A. McCluskey, Nat. Protoc. 2014, 9, 1592.
         | Crossref | GoogleScholarGoogle Scholar | 24922269PubMed |

[4]  L. von Kleist, W. Stahlschmidt, H. Bulut, K. Gromova, D. Puchkov, M. J. Robertson, K. A. MacGregor, N. Tomlin, A. Pechstein, N. Chau, M. Chircop, J. A. Sakoff, J. von Kries, W. Saenger, H.-G. Kräusslich, O. Shupliakov, P. J. Robinson, A. McCluskey, V. Haucke, Cell 2011, 146, 471.
         | Crossref | GoogleScholarGoogle Scholar | 21816279PubMed |

[5]  A. McCluskey, A. T. R. Sim, J. A. Sakoff, J. Med. Chem. 2002, 45, 1151.
         | Crossref | GoogleScholarGoogle Scholar | 11881984PubMed |

[6]  L. Hizartzidis, C. P. Gordon, J. Gilbert, J. A. Sakoff, A. McCluskey, ChemMedChem 2019, 14, 1152.
         | Crossref | GoogleScholarGoogle Scholar | 30938091PubMed |

[7]  J. R. Baker, C. C. Russell, J. Gilbert, J. A. Sakoff, A. McCluskey, ChemMedChem 2020, 15, 490.
         | Crossref | GoogleScholarGoogle Scholar | 32012442PubMed |

[8]  J. R. Baker, J. A. Sakoff, A. McCluskey, Med. Res. Rev. 2019, 40, 972.
         | 31721255PubMed |

[9]  K. S. Gajula, N. Mameda, S. Kodumuri, D. Chevella, R. Banothu, V. Amrutham, B. I. Kutepov, N. Nama, Synth. Commun. 2018, 48, 2866.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  R. Mekala, M. V. Madhubabu, G. Dhanunjaya, S. Regati, K. B. Chandrasekhar, J. Sarva, Synth. Commun. 2017, 47, 121.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. J. Hour, L. J. Huang, S. C. Kuo, Y. Xia, K. Bastow, Y. Nakanishi, E. Hamel, K. H. Lee, J. Med. Chem. 2000, 43, 4479.
         | Crossref | GoogleScholarGoogle Scholar | 11087572PubMed |

[12]  E. Cohen, B. Klarberg, J. R. Vaughan, J. Am. Chem. Soc. 1959, 81, 5508.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  V. J. Ram, Farhanullah, B. K. Tripathi, A. K. Srivastava, Bioorg. Med. Chem. 2003, 11, 2439.
         | Crossref | GoogleScholarGoogle Scholar | 12735990PubMed |

[14]  J. Rudolph, W. P. Esler, S. O’Connor, P. D. G. Coish, P. L. Wickens, M. Brands, D. E. Bierer, B. T. Bloomquist, G. Bondar, L. Chen, C.-Y. Chuang, T. H. Claus, Z. Fathi, W. Fu, U. R. Khire, J. A. Kristie, X.-G. Liu, D. B. Lowe, A. C. McClure, M. Michels, A. A. Ortiz, P. D. Ramsden, R. W. Schoenleber, T. E. Shelekhin, A. Vakalopoulos, W. Tang, L. Wang, L. Yi, S. J. Gardell, J. N. Livingston, L. J. Sweet, W. H. Bullock, J. Med. Chem. 2007, 50, 5202.
         | Crossref | GoogleScholarGoogle Scholar | 17887659PubMed |

[15]  K. Okumura, T. Oine, Y. Yamada, G. Hayashi, M. Nakama, J. Med. Chem. 1968, 11, 348.
         | Crossref | GoogleScholarGoogle Scholar | 4385706PubMed |

[16]  M. Badolato, F. Aiello, N. Neamati, RSC Adv. 2018, 8, 20894.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  G. M. Chinigo, M. Paige, S. Grindrod, E. Hamel, S. Dakshanamurthy, M. Chruszcz, W. Minor, M. L. Brown, J. Med. Chem. 2008, 51, 4620.
         | Crossref | GoogleScholarGoogle Scholar | 18610995PubMed |

[18]  J. Chen, D. Wu, F. He, M. Liu, H. Wu, J. Ding, W. Su, Tetrahedron Lett. 2008, 49, 3814.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  S. Santra, M. Rahman, A. Roy, A. Majee, A. Hajra, Catal. Commun. 2014, 49, 52.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  J. Zhang, D. Ren, Y. Ma, W. Wang, H. Wu, Tetrahedron 2014, 70, 5274.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  Y. Chen, W. Shan, M. Lei, L. Hu, Tetrahedron Lett. 2012, 53, 5923.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  V. B. Labade, P. V. Shinde, M. S. Shingare, Tetrahedron Lett. 2013, 54, 5778.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  J. Wu, X. Du, J. Ma, Y. Zhang, Q. Shi, L. Luo, B. Song, S. Yang, D. P. Hu, Green Chem. 2014, 16, 3210.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  A. Davoodnia, S. Allameh, A. R. Fakhari, N. Tavakoli-Hoseini, Chin. Chem. Lett. 2010, 21, 550.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  A. Ghorbani-Choghamarani, M. Norouzi, J. Mol. Catal. Chem. 2014, 395, 172.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  P. V. N. S. Murthy, D. Rambabu, G. R. Krishna, C. M. Reddy, K. R. S. Prasad, M. V. B. Rao, M. Pal, Tetrahedron Lett. 2012, 53, 863.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  J. Safari, S. Gandomi-Ravandi, J. Mol. Catal. Chem. 2014, 390, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  S. K. Leitch, A. McCluskey, Synlett 2003, 699.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  A. McCluskey, I. W. Muderawan, Muntari, D. J. Young, J. Org. Chem. 2001, 66, 7811.
         | Crossref | GoogleScholarGoogle Scholar | 11701040PubMed |

[30]  C. M. Gordon, A. McCluskey, Chem. Commun. 1999, 1431.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  T. M. Cokley, R. L. Marshall, A. McCluskey, D. J. Young, Tetrahedron Lett. 1996, 37, 1905.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  R. G. Bergman, R. L. Dasnheiser, Angew. Chem. Int. Ed. 2016, 55, 12548.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  S. Mohammed, R. A. Voshwakarma, S. B. Bharate, J. Org. Chem. 2015, 80, 6915.
         | Crossref | GoogleScholarGoogle Scholar | 26067767PubMed |

[34]  W. P. Walters, J. Green, J. R. Weiss, M. A. Murcko, J. Med. Chem. 2011, 54, 6405.
         | Crossref | GoogleScholarGoogle Scholar | 21755928PubMed |

[35]  S. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451.
         | Crossref | GoogleScholarGoogle Scholar | 21504168PubMed |