CO2-Responsive Spherical Polyelectrolyte Brush with Multi-Stimulation for Reversible Protein Immobilization and Release
Rui Zhang A B E , Qionglong Fu A , Di Zhu C , Zheqi Shen A , Keming Zhou A , Yuan Yao D E and Xuedong Zhu A EA Engineering Research Centre of Large Scale Reactor Engineering and Technology, Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
B Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, School of Chemistry and Molecular Engineering, Shanghai 200062, China.
C College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia.
D School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
E Corresponding authors. Email: r.zhang@ecust.edu.cn; yaoyuan@ecust.edu.cn; xdzhu@ecust.edu.cn
Australian Journal of Chemistry 74(2) 135-144 https://doi.org/10.1071/CH20099
Submitted: 30 March 2020 Accepted: 2 June 2020 Published: 21 August 2020
Abstract
Multi-responsive materials have received extensive interest in many areas due to their smart characteristics. This paper presents rationally designed multi-responsive spherical polyelectolyte brushes composed of a solid polystyrene (PS) core and a poly (2-(dimethylamino) ethyl methacrylate) (PDMAEMA) shell synthesized by photoemulsion polymerization. Based on dynamic light scattering, Zeta potential, turbidity measurements, isothermal titration calorimetry, and UV-vis spectroscopy, PS-PDMAEMA works as a good potential adsorbent for bovine serum albumin (BSA) for which the maximum adsorption capability could reach up to 5190 mg g−1. Moreover, the immobilization and release of protein on the polymer brush could be adjusted with different triggers, including the pH, ionic strength, and temperature. Furthermore, the green gas triggers, CO2 and N2, could be employed in the BSA@ PS-PDMAEMA system by easily bubbling over many cycles without any salt accumulation. The main reason for the observed actions is the brushes could be switched alternately between extended and collapsed states with different stimulations. Upon comparing the circular dichroism spectra of original and released BSA after many cycles of adsorption and release, it’s clear that the protein can retain its initial biological activity after release from the PS-PDMAEMA. This work provides an effective and green way to immobilize and release proteins in biotechnology.
References
[1] J. Wang, J. Wang, P. Ding, W. Zhou, Y. Li, M. Drechsler, X. Guo, M. A. Cohen Stuart, Angew. Chem. Int. Ed. 2018, 57, 12680.| Crossref | GoogleScholarGoogle Scholar |
[2] K. Li, J. Wei, H. Yu, P. Xu, J. Wang, H. Yin, M. A. Cohen Stuart, J. Wang, S. Zhou, Angew. Chem. Int. Ed. 2018, 57, 16458.
| Crossref | GoogleScholarGoogle Scholar |
[3] R. Zhang, T. X. Zhou, H. W. Peng, M. Li, X. D. Zhu, Y. Yao, J. Membr. Sci. 2019, 580, 117.
| Crossref | GoogleScholarGoogle Scholar |
[4] Y. Lu, A. Wittemann, M. Ballauff, Macromol. Rapid Commun. 2009, 30, 806.
| Crossref | GoogleScholarGoogle Scholar | 21706663PubMed |
[5] G. Sharma, M. Ballauff, Macromol. Rapid Commun. 2004, 25, 547.
| Crossref | GoogleScholarGoogle Scholar |
[6] Y. Cang, R. Zhang, D. Y. Fang, X. H. Guo, X. D. Zhu, Des. Monomers Polym. 2016, 19, 145.
| Crossref | GoogleScholarGoogle Scholar |
[7] Y. Mei, M. Ballauff, Eur. Phys. J. E 2005, 16, 341.
| Crossref | GoogleScholarGoogle Scholar | 15685435PubMed |
[8] E. Seyrek, P. L. Dubin, C. Tribet, E. A. Gamble, Biomacromolecules 2003, 4, 273.
| Crossref | GoogleScholarGoogle Scholar | 12625722PubMed |
[9] M. Antonov, M. Mazzawi, P. L. Dubin, Biomacromolecules 2010, 11, 51.
| Crossref | GoogleScholarGoogle Scholar | 19947624PubMed |
[10] S. Y. Wang, K. M. Chen, L. Li, X. H. Guo, Biomacromolecules 2013, 14, 818.
| Crossref | GoogleScholarGoogle Scholar |
[11] K. Henzler, A. Wittemann, E. Breininger, M. Ballauff, S. Rosenfeldt, Biomacromolecules 2007, 8, 3674.
| Crossref | GoogleScholarGoogle Scholar | 17929973PubMed |
[12] B. Haupt, T. Neumann, A. Wittemann, M. Ballauff, Biomacromolecules 2005, 6, 948.
| Crossref | GoogleScholarGoogle Scholar | 15762664PubMed |
[13] G. Jackler, A. Wittemann, M. Ballauff, C. Czeslik, Spectrosc. Int. J. 2004, 18, 289.
| Crossref | GoogleScholarGoogle Scholar |
[14] J. Kim, Y. M. Lee, H. Kim, D. Park, J. Kim, W. J. Kim, Biomaterials 2016, 75, 102.
| Crossref | GoogleScholarGoogle Scholar | 26491998PubMed |
[15] I. Frisman, Y. Shachaf, D. Seliktar, H. Bianco-Peled, Langmuir 2011, 27, 6977.
| Crossref | GoogleScholarGoogle Scholar | 21542599PubMed |
[16] E. G. Kelley, J. N. L. Albert, M. O. Sullivan, T. H. Epps, Chem. Soc. Rev. 2013, 42, 7057.
| Crossref | GoogleScholarGoogle Scholar | 23403471PubMed |
[17] N. A. Peppas, J. Z. Hilt, A. Khademhosseini, R. Langer, Adv. Mater. 2006, 18, 1345.
| Crossref | GoogleScholarGoogle Scholar |
[18] G. R. Sun, H. G. Cui, L. Y. Lin, N. S. Lee, C. Yang, W. L. Neumann, J. N. Freskos, J. J. Shieh, R. B. Dorshow, K. L. Wooley, J. Am. Chem. Soc. 2011, 133, 8534.
| Crossref | GoogleScholarGoogle Scholar |
[19] S. Arai, M. Suzuki, S. J. Park, J. S. Yoo, L. Wang, N. Y. Kang, H. H. Ha, Y. T. Chang, Chem. Commun. 2015, 51, 8044.
| Crossref | GoogleScholarGoogle Scholar |
[20] W. F. Yuan, G. Y. Jiang, J. X. Wang, G. J. Wang, Y. L. Song, L. Jiang, Macromolecules 2006, 39, 1300.
| Crossref | GoogleScholarGoogle Scholar |
[21] J. Wang, G. Yang, X. Guo, Z. M. Tang, Z. D. Zhong, S. B. Zhou, Biomaterials 2014, 35, 3080.
| Crossref | GoogleScholarGoogle Scholar | 24388799PubMed |
[22] L. A. Tziveleka, P. Bilalis, A. Chatzipavlidis, N. Boukos, G. Kordas, Macromol. Biosci. 2014, 14, 131.
| Crossref | GoogleScholarGoogle Scholar | 24106236PubMed |
[23] Y. Lu, A. Wittemann, M. Ballauff, M. Drechsler, Macromol. Rapid Commun. 2006, 27, 1137.
| Crossref | GoogleScholarGoogle Scholar |
[24] P. G. Jessop, D. J. Heldebrant, X. W. Li, C. A. Eckert, C. L. Liotta, Nature 2005, 436, 1102.
| Crossref | GoogleScholarGoogle Scholar | 16121169PubMed |
[25] A. Darabi, P. G. Jessop, M. F. Cunningham, Chem. Soc. Rev. 2016, 45, 4391.
| Crossref | GoogleScholarGoogle Scholar | 27284587PubMed |
[26] S. Kumar, X. Tong, Y. L. Dory, M. Lepage, Y. Zhao, Chem. Commun. 2013, 49, 90.
| Crossref | GoogleScholarGoogle Scholar |
[27] B. William, P. Noemie, E. Brigitte, P. Geraldine, Chem. Eng. J. 2020, 383, 123106.
| Crossref | GoogleScholarGoogle Scholar |
[28] S. H. Li, Y. T. Wu, J. H. Wang, Q. Zhang, Y. L. Kou, S. B. Zhang, J. Mater. Chem. 2010, 20, 4379.
| Crossref | GoogleScholarGoogle Scholar |
[29] K. M. Chen, Y. Zhu, Y. F. Zhang, L. Li, Y. Lu, X. H. Guo, Macromolecules 2011, 44, 632.
| Crossref | GoogleScholarGoogle Scholar |
[30] W. Hiller, Macromol. Chem. Phys. 2019, 220, 1900255.
| Crossref | GoogleScholarGoogle Scholar |
[31] S. Y. Wang, K. M. Chen, Y. S. Xu, X. J. Yu, W. H. Wang, L. Li, X. H. Guo, Soft Matter 2013, 9, 11276.
| Crossref | GoogleScholarGoogle Scholar |
[32] R. Zhang, Z. C. Yu, Y. Cang, X. Y. Hou, Z. Q. Shen, J. Deng, Z. M. Zhou, X. H. Guo, J. W. Wang, X. D. Zhu, RSC Adv. 2016, 6, 42693.
| Crossref | GoogleScholarGoogle Scholar |
[33] K. Henzler, B. Haupt, K. Lauterbach, A. Wittemann, O. Borisov, M. Ballauff, J. Am. Chem. Soc. 2010, 132, 3159.
| Crossref | GoogleScholarGoogle Scholar | 20143809PubMed |
[34] H. Kono, I. Oeda, T. Nakamura, React. Funct. Polym. 2013, 73, 97.
| Crossref | GoogleScholarGoogle Scholar |
[35] K. Y. Zhao, T. Chen, B. B. Lin, W. K. Cui, B. H. Kan, N. Yang, X. Y. Zhou, X. X. Zhang, J. F. Wei, React. Funct. Polym. 2015, 87, 7.
| Crossref | GoogleScholarGoogle Scholar |
[36] T. P. B. Nguyen, J. W. Lee, W. G. Shim, H. Moon, Microporous Mesoporous Mater. 2008, 110, 560.
| Crossref | GoogleScholarGoogle Scholar |
[37] J. Y. Tong, X. L. Xu, H. Wang, X. P. Zhuang, F. Zhang, RSC Adv. 2015, 5, 83232.
| Crossref | GoogleScholarGoogle Scholar |
[38] C. Q. Xiong, X. Y. Zhou, N. Zhang, L. P. Zhan, S. M. Chen, J. Y. Wang, W. P. Peng, H. C. Chang, Z. X. Nie, Anal. Chem. 2014, 86, 3876.
| Crossref | GoogleScholarGoogle Scholar |
[39] S. Herrwerth, W. Eck, S. Reinhardt, M. Grunze, J. Am. Chem. Soc. 2003, 125, 9359.
| Crossref | GoogleScholarGoogle Scholar | 12889964PubMed |
[40] A. Wittemann, B. Haupt, M. Ballauff, Phys. Chem. Chem. Phys. 2003, 5, 1671.
| Crossref | GoogleScholarGoogle Scholar |
[41] E. Palecek, V. Ostatna, Analyst 2009, 134, 2076.
| Crossref | GoogleScholarGoogle Scholar | 19768216PubMed |
[42] P. M. Biesheuvel, A. Wittemann, J. Phys. Chem. B 2005, 109, 4209.
| Crossref | GoogleScholarGoogle Scholar | 16851483PubMed |
[43] R. Zhang, Z. C. Yu, L. Wang, Q. Z. Shen, X. Y. Hou, X. H. Guo, J. W. Wang, X. D. Zhu, Y. Yao, Chem. – Eur. J. 2017, 23, 13696.
| Crossref | GoogleScholarGoogle Scholar | 28707806PubMed |
[44] Y. Cang, R. Zhang, G. X. Shi, J. C. Zhang, L. X. Liu, X. Y. Hou, Z. C. Yu, D. Y. Fang, X. H. Guo, J. Mater. Chem. C Mater. Opt. Electron. Devices 2015, 3, 3745.
| Crossref | GoogleScholarGoogle Scholar |
[45] E. Kokufuta, H. Shimizu, I. Nakamura, Macromolecules 1982, 15, 1618.
| Crossref | GoogleScholarGoogle Scholar |