Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Fluorescence Enhancement Method for Enrofloxacin Extraction by Core–Shell Magnetic Microspheres

Linyan Yang A D , Leiming Fu A , Boxin Li A , Jifei Ma A , Cun Li A , Tianming Jin https://orcid.org/0000-0002-9760-1552 A D and Wen Gu B C D
+ Author Affiliations
- Author Affiliations

A Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China.

B College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.

C Key Laboratory of Advanced Energy Materials Chemistry (KLAEMC), Nankai University, Tianjin, 300071, China.

D Corresponding authors. Email: y_linyan@163.com; JTMSCI@163.com; guwen68@nankai.edu.cn

Australian Journal of Chemistry 73(11) 1105-1111 https://doi.org/10.1071/CH19666
Submitted: 26 December 2019  Accepted: 31 March 2020   Published: 19 June 2020

Abstract

In this work, we present novel kinds of γ-Fe2O3@SiO2-NH2-CMC/MOF5 and γ-Fe2O3@SiO2-NH2-CMC/IRMOF3 magnetic metal–organic framework (MOF) nanoparticles which possess both magnetic characteristics and fluorescent properties. Here, [Zn4O(bdc)3] (MOF-5, bdc = 1,4-benzenedicarboxylate) is a kind of shell. IRMOF3, a known MOF with a cubic topology prepared from Zn(NO3)24H2O and 2-amino-1,4-benzene dicarboxylic acid, is another kind of shell which is attractive due to its highly porous, crystalline structure and the presence of non-coordinating amino groups on the benzenedicarboxylate (bdc) linker, which are amenable to post-synthetic modification. γ-Fe2O3@SiO2-NH2-CMC magnetic nanoparticles (MNPs) could be prepared by covalent modification of sodium carboxymethyl cellulose (CMC). The structure of γ-Fe2O3 nanoparticles could be determined by X-ray powder diffraction (XRD). X-ray photoelectron spectroscopy (XPS) spectra could be used for the characterisation of γ-Fe2O3@SiO2-NH2, γ-Fe2O3@SiO2-NH2-CMC, γ-Fe2O3@SiO2-NH2-CMC/MOF5, and γ-Fe2O3@SiO2-NH2-CMC/IRMOF3 nanoparticles. Magnetic solid-phase extraction (MSPE) of enrofloxacin (Enr) experiments exhibited that, for γ-Fe2O3@SiO2-NH2-CMC/IRMOF3, the best effects of adsorption could be obtained at pH 4 and 6, while elution conditions of 0.1 mol L−1 NaOH and 1 % sodium dodecyl sulfate could achieve the best elution effect. The addition of Tb3+ ions could sensitise the fluorescence of Enr. At the same time, via the addition of Tb3+ ions, coordination could occur between nanoparticles and Tb3+ ions, which could be verified by XPS.


References

[1]  W. M. Zhang, Z. M. Yan, J. Gao, P. Tong, W. Liu, L. Zhang, J. Chromatogr. A 2015, 1400, 10.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  L. Mohammed, H. G. Gomaa, D. Ragab, J. Zhu, Particuology 2017, 30, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  A. K. Dutta, S. K. Maji, B. Adhikary, Mater. Res. Bull. 2014, 49, 28.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  M. B. Gawande, P. S. Branco, R. S. Varma, Chem. Soc. Rev. 2013, 42, 3371.
         | Crossref | GoogleScholarGoogle Scholar | 23420127PubMed |

[5]  N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J. S. Guthi, S. F. Chin, A. D. Sherry, D. A. Boothman, J. Gao, Nano Lett. 2006, 6, 2427.
         | Crossref | GoogleScholarGoogle Scholar | 17090068PubMed |

[6]  M. Arruebo, R. Fernández-Pacheco, M. R. Ibarra, J. Santamaría, Nano Today 2007, 2, 22.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  C. Cara, E. Rombi, A. Ardu, M. A. Vacca, C. Cannas, J. Nanosci. Nanotechnol. 2019, 19, 5035.
         | Crossref | GoogleScholarGoogle Scholar | 30913818PubMed |

[8]  A. Fakhri, S. Rashidi, I. Tyagi, S. Agarwal, V. K. Gupta, J. Mol. Liq. 2016, 214, 378.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  V. V. Spiridonov, I. G. Panova, L. A. Makarova, Carbohydr. Polym. 2017, 177, 269.
         | Crossref | GoogleScholarGoogle Scholar | 28962768PubMed |

[10]  Z. Q. Wang, S. M. Cohen, J. Am. Chem. Soc. 2007, 129, 12368.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  X. Y. Cui, Z. Y. Gu, D. Q. Jiang, Y. Li, H. F. Wang, X. P. Yan, Anal. Chem. 2009, 81, 9771.
         | Crossref | GoogleScholarGoogle Scholar | 19894702PubMed |

[12]  D. Ge, H. K. Lee, J. Chromatogr. A 2011, 1218, 8490.
         | Crossref | GoogleScholarGoogle Scholar | 22018717PubMed |

[13]  Z. Y. Gu, Y. J. Chen, J. Q. Jiang, X. P. Yan, Chem. Commun. 2011, 47, 4787.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  N. Chang, Z. Y. Gu, H. F. Wang, X. P. Yan, Anal. Chem. 2011, 83, 7094.
         | Crossref | GoogleScholarGoogle Scholar | 21800908PubMed |

[15]  Z. Y. Gu, C. X. Yang, N. Chang, X. P. Yan, Acc. Chem. Res. 2012, 45, 734.
         | Crossref | GoogleScholarGoogle Scholar | 22404189PubMed |

[16]  S. M. Cohen, Chem. Rev. 2012, 112, 970.
         | Crossref | GoogleScholarGoogle Scholar | 21916418PubMed |

[17]  T. Lu, L. C. Zhang, M. X. Sun, D. Y. Deng, Y. Y. Su, Y. Lv, Anal. Chem. 2016, 88, 3413.
         | Crossref | GoogleScholarGoogle Scholar | 26905374PubMed |

[18]  J. Y. Wang, L. Ren, X. Q. Wang, Q. Wang, Z. F. Wan, L. Li, W. M. Liu, X. M. Wang, M. L. Li, D. W. Tong, Biosens. Bioelectron. 2009, 24, 3097.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  A. V. Biradar, V. S. Patil, P. Chandra, D. S. Doke, T. Asefa, Chem. Commun. 2015, 51, 8496.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  L. Guo, W. Ding, F. Meng, Nano 2014, 9, 1450021.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  Y. Cai, F. Yuan, X. Wang, Z. Sun, Y. Chen, Z. Liu, X. Wang, S. Yang, S. Wang, Cellulose 2017, 24, 175.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  J. J. Qian, L. G. Qiu, Y. M. Wang, Y. P. Yuan, A. J. Xie, Y. H. Shen, Dalton Trans. 2014, 43, 3978.
         | Crossref | GoogleScholarGoogle Scholar | 24452313PubMed |

[23]  G. H. Wang, Y. Q. Lei, H. C. Song, Anal. Methods 2014, 6, 7842.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  L. Y. Yang, J. Tian, J. L. Meng, R. L. Zhao, C. Li, J. F. Ma, T. M. Jin, Molecules 2018, 23, 562.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  J. Wang, Environ. Sci. Pollut. Res. Int. 2018, 25, 33521.
         | Crossref | GoogleScholarGoogle Scholar | 30267348PubMed |

[26]  K. B. Huang, F. Y. Wang, H. W. Feng, H. J. Luo, Y. Long, T. T. Zou, A. S. C. Chan, R. Liu, H. H. Zou, Z. F. Chen, Y. C. Liu, Y. N. Liu, H. Liang, Chem. Commun. 2019, 55, 13066.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  K. B. Huang, F. Y. Wang, X. M. Tang, H. W. Feng, Z. F. Chen, Y. C. Liu, Y. N. Liu, H. Liang, J. Med. Chem. 2018, 61, 3478.
         | Crossref | GoogleScholarGoogle Scholar | 29606001PubMed |

[28]  F. Y. Wang, K. B. Huang, H. W. Feng, Z. F. Chen, Y. N. Liu, H. Liang, Free Radic. Biol. Med. 2018, 129, 418.
         | Crossref | GoogleScholarGoogle Scholar | 30266678PubMed |