Fluorescence Enhancement Method for Enrofloxacin Extraction by Core–Shell Magnetic Microspheres
Linyan Yang A D , Leiming Fu A , Boxin Li A , Jifei Ma A , Cun Li A , Tianming Jin A D and Wen Gu B C DA Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China.
B College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
C Key Laboratory of Advanced Energy Materials Chemistry (KLAEMC), Nankai University, Tianjin, 300071, China.
D Corresponding authors. Email: y_linyan@163.com; JTMSCI@163.com; guwen68@nankai.edu.cn
Australian Journal of Chemistry 73(11) 1105-1111 https://doi.org/10.1071/CH19666
Submitted: 26 December 2019 Accepted: 31 March 2020 Published: 19 June 2020
Abstract
In this work, we present novel kinds of γ-Fe2O3@SiO2-NH2-CMC/MOF5 and γ-Fe2O3@SiO2-NH2-CMC/IRMOF3 magnetic metal–organic framework (MOF) nanoparticles which possess both magnetic characteristics and fluorescent properties. Here, [Zn4O(bdc)3] (MOF-5, bdc = 1,4-benzenedicarboxylate) is a kind of shell. IRMOF3, a known MOF with a cubic topology prepared from Zn(NO3)24H2O and 2-amino-1,4-benzene dicarboxylic acid, is another kind of shell which is attractive due to its highly porous, crystalline structure and the presence of non-coordinating amino groups on the benzenedicarboxylate (bdc) linker, which are amenable to post-synthetic modification. γ-Fe2O3@SiO2-NH2-CMC magnetic nanoparticles (MNPs) could be prepared by covalent modification of sodium carboxymethyl cellulose (CMC). The structure of γ-Fe2O3 nanoparticles could be determined by X-ray powder diffraction (XRD). X-ray photoelectron spectroscopy (XPS) spectra could be used for the characterisation of γ-Fe2O3@SiO2-NH2, γ-Fe2O3@SiO2-NH2-CMC, γ-Fe2O3@SiO2-NH2-CMC/MOF5, and γ-Fe2O3@SiO2-NH2-CMC/IRMOF3 nanoparticles. Magnetic solid-phase extraction (MSPE) of enrofloxacin (Enr) experiments exhibited that, for γ-Fe2O3@SiO2-NH2-CMC/IRMOF3, the best effects of adsorption could be obtained at pH 4 and 6, while elution conditions of 0.1 mol L−1 NaOH and 1 % sodium dodecyl sulfate could achieve the best elution effect. The addition of Tb3+ ions could sensitise the fluorescence of Enr. At the same time, via the addition of Tb3+ ions, coordination could occur between nanoparticles and Tb3+ ions, which could be verified by XPS.
References
[1] W. M. Zhang, Z. M. Yan, J. Gao, P. Tong, W. Liu, L. Zhang, J. Chromatogr. A 2015, 1400, 10.| Crossref | GoogleScholarGoogle Scholar |
[2] L. Mohammed, H. G. Gomaa, D. Ragab, J. Zhu, Particuology 2017, 30, 1.
| Crossref | GoogleScholarGoogle Scholar |
[3] A. K. Dutta, S. K. Maji, B. Adhikary, Mater. Res. Bull. 2014, 49, 28.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. B. Gawande, P. S. Branco, R. S. Varma, Chem. Soc. Rev. 2013, 42, 3371.
| Crossref | GoogleScholarGoogle Scholar | 23420127PubMed |
[5] N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J. S. Guthi, S. F. Chin, A. D. Sherry, D. A. Boothman, J. Gao, Nano Lett. 2006, 6, 2427.
| Crossref | GoogleScholarGoogle Scholar | 17090068PubMed |
[6] M. Arruebo, R. Fernández-Pacheco, M. R. Ibarra, J. Santamaría, Nano Today 2007, 2, 22.
| Crossref | GoogleScholarGoogle Scholar |
[7] C. Cara, E. Rombi, A. Ardu, M. A. Vacca, C. Cannas, J. Nanosci. Nanotechnol. 2019, 19, 5035.
| Crossref | GoogleScholarGoogle Scholar | 30913818PubMed |
[8] A. Fakhri, S. Rashidi, I. Tyagi, S. Agarwal, V. K. Gupta, J. Mol. Liq. 2016, 214, 378.
| Crossref | GoogleScholarGoogle Scholar |
[9] V. V. Spiridonov, I. G. Panova, L. A. Makarova, Carbohydr. Polym. 2017, 177, 269.
| Crossref | GoogleScholarGoogle Scholar | 28962768PubMed |
[10] Z. Q. Wang, S. M. Cohen, J. Am. Chem. Soc. 2007, 129, 12368.
| Crossref | GoogleScholarGoogle Scholar |
[11] X. Y. Cui, Z. Y. Gu, D. Q. Jiang, Y. Li, H. F. Wang, X. P. Yan, Anal. Chem. 2009, 81, 9771.
| Crossref | GoogleScholarGoogle Scholar | 19894702PubMed |
[12] D. Ge, H. K. Lee, J. Chromatogr. A 2011, 1218, 8490.
| Crossref | GoogleScholarGoogle Scholar | 22018717PubMed |
[13] Z. Y. Gu, Y. J. Chen, J. Q. Jiang, X. P. Yan, Chem. Commun. 2011, 47, 4787.
| Crossref | GoogleScholarGoogle Scholar |
[14] N. Chang, Z. Y. Gu, H. F. Wang, X. P. Yan, Anal. Chem. 2011, 83, 7094.
| Crossref | GoogleScholarGoogle Scholar | 21800908PubMed |
[15] Z. Y. Gu, C. X. Yang, N. Chang, X. P. Yan, Acc. Chem. Res. 2012, 45, 734.
| Crossref | GoogleScholarGoogle Scholar | 22404189PubMed |
[16] S. M. Cohen, Chem. Rev. 2012, 112, 970.
| Crossref | GoogleScholarGoogle Scholar | 21916418PubMed |
[17] T. Lu, L. C. Zhang, M. X. Sun, D. Y. Deng, Y. Y. Su, Y. Lv, Anal. Chem. 2016, 88, 3413.
| Crossref | GoogleScholarGoogle Scholar | 26905374PubMed |
[18] J. Y. Wang, L. Ren, X. Q. Wang, Q. Wang, Z. F. Wan, L. Li, W. M. Liu, X. M. Wang, M. L. Li, D. W. Tong, Biosens. Bioelectron. 2009, 24, 3097.
| Crossref | GoogleScholarGoogle Scholar |
[19] A. V. Biradar, V. S. Patil, P. Chandra, D. S. Doke, T. Asefa, Chem. Commun. 2015, 51, 8496.
| Crossref | GoogleScholarGoogle Scholar |
[20] L. Guo, W. Ding, F. Meng, Nano 2014, 9, 1450021.
| Crossref | GoogleScholarGoogle Scholar |
[21] Y. Cai, F. Yuan, X. Wang, Z. Sun, Y. Chen, Z. Liu, X. Wang, S. Yang, S. Wang, Cellulose 2017, 24, 175.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. J. Qian, L. G. Qiu, Y. M. Wang, Y. P. Yuan, A. J. Xie, Y. H. Shen, Dalton Trans. 2014, 43, 3978.
| Crossref | GoogleScholarGoogle Scholar | 24452313PubMed |
[23] G. H. Wang, Y. Q. Lei, H. C. Song, Anal. Methods 2014, 6, 7842.
| Crossref | GoogleScholarGoogle Scholar |
[24] L. Y. Yang, J. Tian, J. L. Meng, R. L. Zhao, C. Li, J. F. Ma, T. M. Jin, Molecules 2018, 23, 562.
| Crossref | GoogleScholarGoogle Scholar |
[25] J. Wang, Environ. Sci. Pollut. Res. Int. 2018, 25, 33521.
| Crossref | GoogleScholarGoogle Scholar | 30267348PubMed |
[26] K. B. Huang, F. Y. Wang, H. W. Feng, H. J. Luo, Y. Long, T. T. Zou, A. S. C. Chan, R. Liu, H. H. Zou, Z. F. Chen, Y. C. Liu, Y. N. Liu, H. Liang, Chem. Commun. 2019, 55, 13066.
| Crossref | GoogleScholarGoogle Scholar |
[27] K. B. Huang, F. Y. Wang, X. M. Tang, H. W. Feng, Z. F. Chen, Y. C. Liu, Y. N. Liu, H. Liang, J. Med. Chem. 2018, 61, 3478.
| Crossref | GoogleScholarGoogle Scholar | 29606001PubMed |
[28] F. Y. Wang, K. B. Huang, H. W. Feng, Z. F. Chen, Y. N. Liu, H. Liang, Free Radic. Biol. Med. 2018, 129, 418.
| Crossref | GoogleScholarGoogle Scholar | 30266678PubMed |