Magnetic Nanoparticle Supported Ionic Liquid Phase Catalyst for Oxidation of Alcohols
Altafhusen Naikwade A , Megha Jagadale A , Dolly Kale A and Gajanan Rashinkar A BA Department of Chemistry, Shivaji University, Kolhapur, 416004, Maharashtra, India.
B Corresponding author. Email: gsr_chem@unishivaji.ac.in
Australian Journal of Chemistry 73(11) 1088-1097 https://doi.org/10.1071/CH19627
Submitted: 4 December 2019 Accepted: 26 February 2020 Published: 25 June 2020
Abstract
A new magnetic nanoparticle supported ionic liquid phase (SILP) catalyst containing perruthenate anions was prepared by a multistep procedure. The various analytical techniques such as FT-IR spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, thermogravimetric analysis, energy dispersive X-ray analysis, and vibrating sample magnetometer analysis ascertained the successful formation of catalyst. The performance of a magnetically retrievable SILP catalyst was evaluated in the selective oxidation of alcohols. The split test and leaching studies of the SILP catalyst confirmed its heterogeneous nature. In addition, the reusability potential of SILP catalyst was also investigated which revealed its robust activity up to six consecutive cycles.
References
[1] H. C. Erythropel, J. B. Zimmerman, T. M. de Winter, L. Petitjean, F. Melnikov, C. H. Lam, A. W. Lounsbury, K. E. Mellor, N. Z. Janković, Q. Tu, L. N. Pincus, M. M. Falinski, W. Shi, P. Coish, D. L. Plata, P. T. Anastas, Green Chem. 2018, 20, 1929.| Crossref | GoogleScholarGoogle Scholar |
[2] P. T. Anastas, J. C. Warner, Green Chemistry: Theory and Practice 1998 (Oxford University Press: New York, NY).
[3] C. Van Doorslaer, J. Wahlen, P. Mertens, K. Binnemans, D. De Vos, Dalton Trans. 2010, 39, 8377.
| Crossref | GoogleScholarGoogle Scholar | 20419187PubMed |
[4] V. Campisciano, F. Giacalone, M. Gruttadauria, Chem. Rec. 2017, 17, 918.
| Crossref | GoogleScholarGoogle Scholar | 28444986PubMed |
[5] F. Giacalone, M. Gruttadauria, ChemCatChem 2016, 8, 664.
| Crossref | GoogleScholarGoogle Scholar |
[6] X. Zheng, S. Luo, L. Zhang, J.-P. Cheng, Green Chem. 2009, 11, 455.
| Crossref | GoogleScholarGoogle Scholar |
[7] A. Riisager, R. Fehrmann, M. Haumann, P. Wasserscheid, Eur. J. Inorg. Chem. 2006, 695.
| Crossref | GoogleScholarGoogle Scholar |
[8] G. Molteni, A. M. Ferretti, S. Mondini, A. Ponti, J. Nanopart. Res. 2018, 20, 79.
| Crossref | GoogleScholarGoogle Scholar |
[9] S. Shylesh, V. Schünemann, W. R. Thiel, Angew. Chem. Int. Ed. 2010, 49, 3428.
| Crossref | GoogleScholarGoogle Scholar |
[10] H.-Y. Lü, S.-H. Yang, J. Deng, Z.-H. Zhang, Aust. J. Chem. 2010, 63, 1290.
| Crossref | GoogleScholarGoogle Scholar |
[11] H. Dadhania, D. Raval, A. Dadhania, Polycyclic Aromat. Compd. 2019,
| Crossref | GoogleScholarGoogle Scholar |
[12] J. S. Ghomi, S. Zahedi, Ultrason. Sonochem. 2017, 34, 916.
| Crossref | GoogleScholarGoogle Scholar |
[13] H. T. Nguyen, N.-P. T. Le, D.-K. N. Chau, P. H. Tran, RSC Adv. 2018, 8, 35681.
| Crossref | GoogleScholarGoogle Scholar |
[14] R.-Q. Yang, N. Zhang, X.-G. Meng, X.-H. Liao, L. Li, H.-J. Song, Aust. J. Chem. 2018, 71, 559.
| Crossref | GoogleScholarGoogle Scholar |
[15] A. L. Cappelletti, P. M. Uberman, S. E. Martín, M. E. Saleta, H. E. Troiani, R. D. Sánchez, R. E. Carbonio, M. C. Strumia, Aust. J. Chem. 2015, 68, 1492.
| Crossref | GoogleScholarGoogle Scholar |
[16] H.-Y. Lü, S.-H. Yang, J. Deng, Z.-H. Zhang, Aust. J. Chem. 2010, 63, 1290.
| Crossref | GoogleScholarGoogle Scholar |
[17] Y.-R. Cui, C. Hong, Y.-L. Zhou, Y. Li, X.-M. Gao, X.-X. Zhang, Talanta 2011, 85, 1246.
| Crossref | GoogleScholarGoogle Scholar | 21807178PubMed |
[18] P. B. Shete, R. M. Patil, B. M. Tiwale, S. H. Pawar, J. Magn. Magn. Mater. 2015, 377, 406.
| Crossref | GoogleScholarGoogle Scholar |
[19] S. Kumari, R. P. Singh, Int. J. Biol. Macromol. 2012, 51, 76.
| Crossref | GoogleScholarGoogle Scholar | 22342348PubMed |
[20] J. Mao, W. Jiang, J. Gu, S. Zhou, Y. Lu, T. Xie, Appl. Surf. Sci. 2014, 317, 787.
| Crossref | GoogleScholarGoogle Scholar |
[21] M. H. Mashhadizadeh, M. Amoli-Diva, M. R. Shapouri, H. Afruzi, Food Chem. 2014, 151, 300.
| Crossref | GoogleScholarGoogle Scholar | 24423536PubMed |
[22] S. Rengshausen, F. Etscheidt, J. Großkurth, K. L. Luska, A. Bordet, W. Leitner, Synlett 2019, 30, 405.
| Crossref | GoogleScholarGoogle Scholar |
[23] L. Offner‐Marko, A. Bordet, G. Moos, S. Tricard, S. Rengshausen, B. Chaudret, K. L. Luska, W. Leitner, Angew. Chem. Int. Ed. 2018, 57, 12721.
| Crossref | GoogleScholarGoogle Scholar |
[24] M. Nasrollahzadeh, Z. Issaabadi, S. Mohammad Sajadi, RSC Adv. 2018, 8, 27631.
| Crossref | GoogleScholarGoogle Scholar |
[25] C. Garkoti, J. Shabir, S. Mozumdar, New J. Chem. 2017, 41, 9291.
| Crossref | GoogleScholarGoogle Scholar |
[26] R. Teimuri-Mofrad, S. Esmati, M. Rabiei, M. Gholamhosseini-Nazari, Heterocycl. Commun. 2017, 23, 439.
| Crossref | GoogleScholarGoogle Scholar |
[27] S.-Q. Bai, L. Jiang, S.-L. Huang, M. Lin, S.-Y. Zhang, M.-Y. Han, J. Xu, Y. Lu, G.-X. Jin, T. S. Andy Hor, Aust. J. Chem. 2014, 67, 1387.
| Crossref | GoogleScholarGoogle Scholar |
[28] M. B. Gawande, P. S. Branco, R. S. Varma, Chem. Soc. Rev. 2013, 42, 3371.
| Crossref | GoogleScholarGoogle Scholar | 23420127PubMed |
[29] Z. Zarnegar, J. Safari, J. Nanopart. Res. 2014, 16, 2509.
| Crossref | GoogleScholarGoogle Scholar |
[30] Y. Qiao, H. Li, L. Hua, L. Orzechowski, K. Yan, B. Feng, Z. Pan, N. Theyssen, W. Leitner, Z. Hou, ChemPlusChem 2012, 77, 1128.
| Crossref | GoogleScholarGoogle Scholar |
[31] D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F. Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight, G. J. Hutchings, Science 2006, 311, 362.
| Crossref | GoogleScholarGoogle Scholar | 16424335PubMed |
[32] M. Beller, C. Bolm, Transition Metals for Organic Synthesis, 2nd edn 2004 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).
[33] T. J. Zerk, P. W. Moore, J. S. Harbort, S. Chow, L. Byrne, G. A. Koutsantonis, J. R. Harmer, M. Martínez, C. M. Williams, P. V. Bernhardt, Chem. Sci. 2017, 8, 8435.
| Crossref | GoogleScholarGoogle Scholar | 29619191PubMed |
[34] P. W. Moore, C. D. G. Read, P. V. Bernhardt, C. M. Williams, Chem. – Eur. J. 2018, 24, 4556.
| Crossref | GoogleScholarGoogle Scholar | 29508453PubMed |
[35] B. Karimi, D. Elhamifar, O. Yari, M. Khorasani, H. Vali, J. H. Clark, A. J. Hunt, Chem. – Eur. J. 2012, 18, 13520.
| Crossref | GoogleScholarGoogle Scholar | 22945297PubMed |
[36] R. Ciriminna, P. Hesemann, J. J. E. Moreau, M. Carraro, S. Campestrini, M. Pagliaro, Chem. – Eur. J. 2006, 12, 5220.
| Crossref | GoogleScholarGoogle Scholar | 16622885PubMed |
[37] Y. Xie, Z. Zhang, S. Hu, J. Song, W. Li, B. Han, Green Chem. 2008, 10, 278.
| Crossref | GoogleScholarGoogle Scholar |
[38] J. Lybaert, B. U. W. Maes, K. Abbaspour Tehrani, K. De Wael, Electrochim. Acta 2015, 182, 693.
| Crossref | GoogleScholarGoogle Scholar |
[39] N. Ghalavand, M. M. Heravi, M. R. Nabid, R. Sedghi, J. Alloys Compd. 2019, 799, 279.
| Crossref | GoogleScholarGoogle Scholar |
[40] M. Mohammadi, A. Khazaei, A. Rezaei, Z. Huajun, S. Xuwei, ACS Sustain. Chem. & Eng. 2019, 7, 5283.
| Crossref | GoogleScholarGoogle Scholar |
[41] V. Panwar, P. Kumar, S. S. Ray, S. L. Jain, Tetrahedron Lett. 2015, 56, 3948.
| Crossref | GoogleScholarGoogle Scholar |
[42] T. M. A. Shaikh, L. Emmanuvel, A. Sudalai, J. Org. Chem. 2006, 71, 5043.
| Crossref | GoogleScholarGoogle Scholar |
[43] M. Uyanik, K. Ishihara, Chem. Commun. 2009, 2086.
| Crossref | GoogleScholarGoogle Scholar |
[44] M. F. Pinto, M. Olivares, A. Vivancos, G. Guisado-Barrios, M. Albrecht, B. Royo, Catal. Sci. Technol. 2019, 9, 2421.
| Crossref | GoogleScholarGoogle Scholar |
[45] A. Akbari, M. Amini, A. Tarassoli, B. Eftekhari-Sis, N. Ghasemian, E. Jabbari, Nano-Struct. Nano-Objects 2018, 14, 19.
| Crossref | GoogleScholarGoogle Scholar |
[46] Y. Sun, H. Ma, Y. Luo, S. Zhang, J. Gao, J. Xu, Chem. – Eur. J. 2018, 24, 4653.
| Crossref | GoogleScholarGoogle Scholar | 29377303PubMed |
[47] F. Mao, Z. Qi, H. Fan, D. Sui, R. Chen, J. Huang, RSC Adv. 2017, 7, 1498.
| Crossref | GoogleScholarGoogle Scholar |
[48] M. A. Nasseri, K. Hemmat, A. Allahresani, E. Hamidi‐Hajiabadi, Appl. Organomet. Chem. 2019, 33, e4809.
| Crossref | GoogleScholarGoogle Scholar |
[49] J. M. Hoover, J. E. Steves, S. S. Stahl, Nat. Protoc. 2012, 7, 1161.
| Crossref | GoogleScholarGoogle Scholar | 22635108PubMed |
[50] X. Yan, X. Yue, K. Liu, Z. Hao, Z. Han, J. Lin, Front Chem. 2019, 7, 394.
| Crossref | GoogleScholarGoogle Scholar | 31214574PubMed |
[51] R. Ray, S. Chandra, D. Maiti, G. K. Lahiri, Chem. – Eur. J. 2016, 22, 8814.
| Crossref | GoogleScholarGoogle Scholar | 27257955PubMed |
[52] X.-T. Zhou, H.-B. Ji, S.-G. Liu, Tetrahedron Lett. 2013, 54, 3882.
| Crossref | GoogleScholarGoogle Scholar |
[53] H. A. Beejapur, F. Giacalone, R. Noto, P. Franchi, M. Lucarini, M. Gruttadauria, ChemCatChem 2013, 5, 2991.
| Crossref | GoogleScholarGoogle Scholar |
[54] H. A. Beejapur, V. Campisciano, F. Giacalone, M. Gruttadauria, Adv. Synth. Catal. 2015, 357, 51.
| Crossref | GoogleScholarGoogle Scholar |
[55] J. Fan, F. Pu, M. Sun, Z.-W. Liu, X.-Y. Han, J.-F. Wei, X.-Y. Shi, New J. Chem. 2016, 40, 10498.
| Crossref | GoogleScholarGoogle Scholar |
[56] F. Shi, M. K. Tse, M. Beller, Chem. Asian J. 2007, 2, 411.
| Crossref | GoogleScholarGoogle Scholar | 17441178PubMed |
[57] A. V. Biradar, M. K. Dongare, S. B. Umbarkar, Tetrahedron Lett. 2009, 50, 2885.
| Crossref | GoogleScholarGoogle Scholar |
[58] R. Kurane, J. Jadhav, S. Khanapure, R. Salunkhe, G. Rashinkar, Green Chem. 2013, 15, 1849.
| Crossref | GoogleScholarGoogle Scholar |
[59] A. Naikwade, M. Jagadale, D. Kale, S. Gajare, G. Rashinkar, Catal. Lett. 2018, 148, 3178.
| Crossref | GoogleScholarGoogle Scholar |
[60] S. Khanapure, M. Jagadale, D. Kale, S. Gajare, G. Rashinkar, Aust. J. Chem. 2019, 72, 513.
| Crossref | GoogleScholarGoogle Scholar |
[61] M. Kooti, M. Afshari, Mater. Res. Bull. 2012, 47, 3473.
| Crossref | GoogleScholarGoogle Scholar |
[62] M. A. Zolfigol, R. Ayazi-Nasrabadi, RSC Adv. 2016, 6, 69595.
| Crossref | GoogleScholarGoogle Scholar |
[63] C. Tang, Z. Zou, Y. Fu, K. Song, ChemistrySelect 2018, 3, 5987.
| Crossref | GoogleScholarGoogle Scholar |
[64] H. B. Friedrich, N. Singh, Catal. Lett. 2006, 110, 61.
| Crossref | GoogleScholarGoogle Scholar |
[65] Q. Dong, X. Zhuang, Z. Li, B. Li, B. Fang, C. Yang, H. Xie, F. Zhang, X. Feng, J. Mater. Chem. A 2015, 3, 7767.
| Crossref | GoogleScholarGoogle Scholar |
[66] M. K. Kolel-Veetil, R. M. Gamache, N. Bernstein, R. Goswami, S. B. Qadri, K. P. Fears, J. B. Miller, E. R. Glaser, T. M. Keller, J. Mater. Chem. C 2015, 3, 11705.
| Crossref | GoogleScholarGoogle Scholar |
[67] C. M. Woodbridge, D. L. Pugmire, R. C. Johnson, N. M. Boag, M. A. Langell, J. Phys. Chem. B 2000, 104, 3085.
| Crossref | GoogleScholarGoogle Scholar |
[68] F. Rondino, D. Catone, G. Mattioli, A. A. Bonapasta, P. Bolognesi, A. R. Casavola, M. Coreno, P. O’Keeffe, L. Avaldi, RSC Adv. 2014, 4, 5272.
| Crossref | GoogleScholarGoogle Scholar |
[69] R. K. Blundell, P. Licence, Phys. Chem. Chem. Phys. 2014, 16, 15278.
| Crossref | GoogleScholarGoogle Scholar | 24942199PubMed |
[70] Y. Nonoguchi, Y. Iihara, K. Ohashi, T. Murayama, T. Kawai, Chem. Asian J. 2016, 11, 2423.
| Crossref | GoogleScholarGoogle Scholar | 27439731PubMed |
[71] L. Ji, L. Zhou, X. Bai, Y. Shao, G. Zhao, Y. Qu, C. Wang, Y. Li, J. Mater. Chem. 2012, 22, 15853.
| Crossref | GoogleScholarGoogle Scholar |
[72] S. Ghosh, A. Z. M. Badruddoza, M. S. Uddin, K. Hidajat, J. Colloid Interface Sci. 2011, 354, 483.
| Crossref | GoogleScholarGoogle Scholar | 21167497PubMed |
[73] S. Kanemoto, S. Matsubara, K. Takai, K. Oshima, K. Utimato, H. Nozaki, Bull. Chem. Soc. Jpn 1988, 61, 3607.
| Crossref | GoogleScholarGoogle Scholar |
[74] K. B. Sharpless, K. Akashi, K. Oshima, Tetrahedron Lett. 1976, 17, 2503.
[75] D. G. Lee, L. N. Congson, Can. J. Chem. 1990, 68, 1774.
| Crossref | GoogleScholarGoogle Scholar |
[76] U. Siemeling, T.-C. Auch, Chem. Soc. Rev. 2005, 34, 584.
| Crossref | GoogleScholarGoogle Scholar | 15965540PubMed |
[77] R. C. J. Atkinson, V. C. Gibson, N. J. Long, Chem. Soc. Rev. 2004, 33, 313.
| Crossref | GoogleScholarGoogle Scholar |
[78] Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Material Science (Eds A. Togni, T. Hayashi) 1995 (Wiley-VCH: Weinheim).
[79] T. J. Colacot, Platin. Met. Rev. 2001, 45, 22.
[80] P. Barbaro, C. Bianchini, G. Giambastiani, S. L. Parisel, Coord. Chem. Rev. 2004, 248, 2131.
| Crossref | GoogleScholarGoogle Scholar |
[81] Metallocenes (Eds A. Togni, R. L. Halterman) 1998 (Wiley-VCH: Weinheim).
[82] X. Zhao, Y. Shi, T. Wang, Y. Cai, G. Jiang, J. Chromatogr. A 2008, 1188, 140.
| Crossref | GoogleScholarGoogle Scholar | 18329033PubMed |
[83] D. Yang, J. Hu, S. Fu, J. Phys. Chem. C 2009, 113, 7646.
| Crossref | GoogleScholarGoogle Scholar |
[84] A. Naikwade, M. Jagadale, D. Kale, S. Gajare, P. Bansode, G. Rashinkar, Appl. Organometal. Chem. 2019, 33, e5066.