Specific Recognition of Methanol Using a Symmetric Tetramethylcucurbit[6]uril-Based Porous Supramolecular Assembly Incorporating Adsorbed Dyes
Fei Yang Tian A , Rui Xue Cheng A , Yun Qian Zhang A , Zhu Tao A B and Qian Jiang Zhu AA Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.
B Corresponding author. Email: gzutao@263.net
Australian Journal of Chemistry 73(11) 1065-1073 https://doi.org/10.1071/CH19586
Submitted: 13 November 2019 Accepted: 5 February 2020 Published: 26 March 2020
Abstract
A symmetric tetramethylcucurbit[6]uril-based porous supramolecular assembly was prepared in an aqueous H2SO4 solution (5 M). The driving force for the formation of this assembly is mainly the outer surface interaction of Q[n], which includes the ion-dipole interaction of SO42− anions and the positive electrostatic potential of the outer surface of the symmetric tetramethylcucurbit[6]uril (TMeQ[6]), the dipole-dipole interactions between the positive electrostatic potential of the outer surface of TMeQ[6] and portal carbonyl oxygens of TMeQ[6], and the hydrogen bonding between lattice water molecules and portal carbonyl oxygen atoms in TMeQ[6]. The TMeQ[6]-based porous supramolecular assembly exhibits the characteristics of absorbed fluorophore guests (FGs), such as dyes and polycyclic compounds with different fluorescence characteristics. Moreover, the resulting luminescent assemblies (FG@As) can respond to certain volatile organic compounds; in particular, the luminescent assemblies of rhodamine B or pyrene display a unique fluorescence enhancement in response to methanol.
References
[1] Y. J. Zhao, Y. Q. Shen, S. F. Xue, Q. J. Zhu, Z. Tao, J. X. Zhang, Z. B. Wei, L. S. Long, M. L. Hu, H. P. Xiao, Chin. Sci. Bull. 2004, 49, 1111.| Crossref | GoogleScholarGoogle Scholar |
[2] Y. J. Zhao, S. F. Xue, Y. Q. Zhang, Q. J. Zhu, Z. Tao, J. X. Zhang, Z. B. Wei, L. S. Long, Acta Chimi. Sin. 2005, 63, 913.
[3] H. Cong, Y. J. Zhao, S. F. Xue, Z. Tao, Q. J. Zhu, J. Mol. Model. 2007, 13, 1221.
| Crossref | GoogleScholarGoogle Scholar | 17917750PubMed |
[4] Y. Yan, S. F. Xue, H. Cong, J. X. Zhang, Y. Q. Zhang, Q. J. Zhu, Z. Tao, New J. Chem. 2009, 33, 2136.
| Crossref | GoogleScholarGoogle Scholar |
[5] J. P. Zeng, S. M. Zhang, Y. Q. Zhang, Z. Tao, Q. J. Zhu, S. F. Xue, G. Wei, Cryst. Growth Des. 2010, 10, 4509.
| Crossref | GoogleScholarGoogle Scholar |
[6] X. Xiao, L. He, Z. Tao, S. F. Xue, Q. J. Zhu, Supramol. Chem. 2010, 22, 194.
| Crossref | GoogleScholarGoogle Scholar |
[7] X. Xiao, Q. H. Hu, Z. Tao, Y. Q. Zhang, S. F. Xue, Q. J. Zhu, G. Wei, Chem. Phys. Lett. 2011, 514, 317.
| Crossref | GoogleScholarGoogle Scholar |
[8] H. Zhang, Y. Huang, S. F. Xue, Z. Tao, Q. J. Zhu, Supramol. Chem. 2011, 23, 527.
| Crossref | GoogleScholarGoogle Scholar |
[9] H. Cong, C. R. Li, S. F. Xue, Z. Tao, Q. J. Zhu, G. Wei, Supramol. Chem. 2012, 24, 392.
| Crossref | GoogleScholarGoogle Scholar |
[10] B. Yang, X. Xiao, Y. Q. Zhang, Q. J. Zhu, S. F. Xue, Z. Tao, G. Wei, RSC Adv. 2014, 4, 44359.
| Crossref | GoogleScholarGoogle Scholar |
[11] B. Yang, L. M. Zheng, Z. Z. Gao, X. Xiao, Q. J. Zhu, S. F. Xue, Z. Tao, J. X. Liu, J. Org. Chem. 2014, 79, 11194.
| Crossref | GoogleScholarGoogle Scholar | 25353695PubMed |
[12] X. Xiao, Z. Z. Gao, C. L. Shan, Z. Tao, Q. J. Zhu, S. F. Xue, J. X. Liu, Phys. Chem. Chem. Phys. 2015, 17, 8618.
| Crossref | GoogleScholarGoogle Scholar | 25746008PubMed |
[13] Z. Z. Gao, D. Bai, Z. Y. Xiao, Q. J. Zhu, S. F. Xue, Z. Tao, X. Xiao, Inorg. Chem. Commun. 2016, 71, 68.
| Crossref | GoogleScholarGoogle Scholar |
[14] Y. H. Huang, Q. X. Geng, X. Y. Jin, H. Cong, F. Qiu, L. Xua, Z. Tao, G. Wei, Sens. Actuators B Chem. 2017, 243, 1102.
| Crossref | GoogleScholarGoogle Scholar |
[15] P. H. Shan, S. C. Tu, R. L. Lin, Z. Tao, J. X. Liu, X. Xiao, CrystEngComm 2017, 19, 2168.
| Crossref | GoogleScholarGoogle Scholar |
[16] Y. Q. Zhang, Z. Tao, Y. J. Zhao, S. F. Xue, Q. J. Zhu, Z. B. Wei, L. S. Long, Wuji Huaxue Xuebao 2005, 21, 1576.
[17] W. J. Chen, D. H. Yu, Y. Q. Zhang, Q. J. Zhu, S. F. Xue, Z. Tao, G. Wei, Inorg. Chem. 2011, 50, 6956.
| Crossref | GoogleScholarGoogle Scholar | 21732658PubMed |
[18] T. Zhang, Y. Q. Zhang, Q. J. Zhu, Z. Tao, Polyhedron 2013, 53, 98.
| Crossref | GoogleScholarGoogle Scholar |
[19] B. Yang, Z. Z. Gao, J. H. Lu, Q. J. Zhu, S. F. Xue, Z. Tao, C. Redshaw, X. Xiao, CrystEngComm 2016, 18, 5028.
| Crossref | GoogleScholarGoogle Scholar |
[20] Y. Zhao, L. L. Liang, K. Chen, T. Zhang, X. Xiao, Y. Q. Zhang, Z. Tao, S. F. Xue, Q. J. Zhu, CrystEngComm 2013, 15, 7987.
| Crossref | GoogleScholarGoogle Scholar |
[21] X. L. Ni, X. Xiao, H. Cong, Q. J. Zhu, S. F. Xue, Z. Tao, Acc. Chem. Res. 2014, 47, 1386.
| Crossref | GoogleScholarGoogle Scholar | 24673124PubMed |
[22] F. Y. Tian, Y. Q. Zhang, K. Chen, Z. Tao, Q. J. Zhu, J. Chem.
| Crossref | GoogleScholarGoogle Scholar |
[23] K. Kim, Chem. Soc. Rev. 2002, 31, 96.
| Crossref | GoogleScholarGoogle Scholar | 12109209PubMed |
[24] R. N. Dsouza, U. Pischel, W. M. Nau, Chem. Rev. 2011, 111, 7941.
| Crossref | GoogleScholarGoogle Scholar | 21981343PubMed |
[25] J. L. Tian, D. W. Chen, Y. Zhang, Z. Liu, T. Li, Chem. Commun. 2016, 52, 6351.
| Crossref | GoogleScholarGoogle Scholar |
[26] J. Liu, Y. Lan, Z. Yu, C. S. Tan, R. M. Parker, C. Abell, O. A. Scherman, Acc. Chem. Res. 2017, 50, 208.
| Crossref | GoogleScholarGoogle Scholar | 28075551PubMed |
[27] W. Liu, S. K. Samanta, B. D. Smith, L. Isaacs, Chem. Soc. Rev. 2017, 46, 2391.
| Crossref | GoogleScholarGoogle Scholar | 28191579PubMed |
[28] J. Murray, K. Kim, T. Ogoshi, W. Yao, B. C. Gibb, Chem. Soc. Rev. 2017, 46, 2479.
| Crossref | GoogleScholarGoogle Scholar | 28338130PubMed |
[29] O. A. Gerasko, M. N. Sokolov, V. P. Fedin, Pure Appl. Chem. 2004, 76, 1633.
| Crossref | GoogleScholarGoogle Scholar |
[30] J. Lü, J. X. Lin, M. N. Cao, R. Cao, Coord. Chem. Rev. 2013, 257, 1334.
| Crossref | GoogleScholarGoogle Scholar |
[31] X. L. Ni, X. Xiao, H. Cong, L. L. Liang, K. Chen, X. J. Cheng, N. N. Ji, Q. J. Zhu, S. F. Xue, Z. Tao, Chem. Soc. Rev. 2013, 42, 9480.
| Crossref | GoogleScholarGoogle Scholar | 24048328PubMed |
[32] X. L. Ni, S. F. Xue, Z. Tao, Q. J. Zhu, L. F. Lindoy, G. Wei, Coord. Chem. Rev. 2015, 287, 89.
| Crossref | GoogleScholarGoogle Scholar |
[33] X. K. Fang, P. Kogerler, L. Isaacs, S. Uchida, N. Mizuno, J. Am. Chem. Soc. 2009, 131, 432.
| Crossref | GoogleScholarGoogle Scholar |
[34] J. Lu, J. X. Lin, M. N. Cao, R. Cao, Coord. Chem. Rev. 2013, 257, 1334.
| Crossref | GoogleScholarGoogle Scholar |
[35] J. Lu, J. X. Lin, X. L. Zhao, R. Cao, Chem. Commun. 2012, 48, 669.
| Crossref | GoogleScholarGoogle Scholar |
[36] B. X. Han, C. Z. Wang, K. Chen, X. Xiao, Z. Tao, S. F. Xue, Y. Q. Zhang, Q. J. Zhu, CrystEngComm 2014, 16, 1615.
| Crossref | GoogleScholarGoogle Scholar |
[37] R. G. Lin, L. S. Long, R. B. Huang, L. S. Zheng, Cryst. Growth Des. 2008, 8, 791.
| Crossref | GoogleScholarGoogle Scholar |
[38] X. Tian, L. X. Chen, Y. Q. Yao, K. Chen, M. D. Chen, X. Zeng, Z. Tao, ACS Omega 2018, 3, 6665.
| Crossref | GoogleScholarGoogle Scholar | 31458841PubMed |
[39] I. Hwang, W. S. Jeon, H. J. Kim, D. Kim, H. Kim, N. Selvapalam, N. Fujita, S. Shinkai, K. Kim, Angew. Chem. Int. Ed. 2007, 46, 210.
| Crossref | GoogleScholarGoogle Scholar |
[40] S. Lim, H. Kim, N. Selvapalam, K. J. Kim, S. J. Cho, G. Seo, K. Kim, Angew. Chem. Int. Ed. 2008, 47, 3352.
| Crossref | GoogleScholarGoogle Scholar |
[41] H. Kim, Y. Kim, M. Yoon, S. Lim, S. M. Park, G. Seo, K. Kim, J. Am. Chem. Soc. 2010, 132, 12200.
| Crossref | GoogleScholarGoogle Scholar | 20718409PubMed |
[42] M. Yoon, K. Suh, H. Kim, Y. Kim, N. Selvapalam, K. Kim, Angew. Chem. Int. Ed. 2011, 50, 7870.
| Crossref | GoogleScholarGoogle Scholar |
[43] W. X. Zhao, C. Z. Wang, Y. Q. Zhang, S. F. Xue, Q. J. Zhu, Z. Tao, New J. Chem. 2015, 39, 2433.
| Crossref | GoogleScholarGoogle Scholar |
[44] X. Cui, W. Wei, X. Zhao, K. Chen, X. L. Ni, Y. Q. Zhang, Z. Tao, Chem. – Eur. J. 2017, 23, 2759.
| Crossref | GoogleScholarGoogle Scholar | 27935127PubMed |
[45] Y. Q. Yao, Y. J. Zhang, C. Huang, Q. J. Zhu, Z. Tao, X. L. Ni, G. Wei, Chem. Mater. 2017, 29, 5468.
| Crossref | GoogleScholarGoogle Scholar |
[46] B. T. Nguyen, E. V. Anslyn, Coord. Chem. Rev. 2006, 250, 3118.
| Crossref | GoogleScholarGoogle Scholar |
[47] Y. Q. Yao, Y. J. Zhang, Y. Q. Zhang, Z. Tao, X. L. Ni, G. Wei, ACS Appl. Mater. Interfaces 2017, 9, 40760.
| Crossref | GoogleScholarGoogle Scholar | 29091394PubMed |
[48] M. Liu, Y. Q. Yao, Y. Q. Zhang, Z. Tao, X. Xiao, Q. J. Zhu, Sens. Actuators B Chem. 2019, 283, 290.
| Crossref | GoogleScholarGoogle Scholar |
[49] X. D. Zhang, Y. Zhao, K. Chen, X. Y. Dao, Y. S. Kang, Y. Liu, W. Y. Sun, Chemistry 2020, 26, 2154.
| Crossref | GoogleScholarGoogle Scholar | 31803978PubMed |
[50] X. D. Zhang, Y. Zhao, K. Chen, J. H. Guo, P. Wang, H. Wu, W. Y. Sun, Sensor. Actuat. B Chem 2019, 282, 844.
| Crossref | GoogleScholarGoogle Scholar |
[51] X. D. Zhang, Y. Zhao, K. Chen, P. Wang, Y. S. Kang, H. Wu, W. Y. Sun, Dalton Trans. 2018, 47, 3958.
| Crossref | GoogleScholarGoogle Scholar | 29460939PubMed |
[52] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 18156677PubMed |
[53] G. M. Sheldrick, SHELXL-97: Program for the Solution and Refinement of Crystal Structures 1997 (University of Göttingen: Göttingen).