Investigation of CO2 Adsorption on Triethylenetetramine Modified Adsorbents of TETA(n)/Zr-TSCD
Fan-Ming Yang A B , Min Liao A , Chang-Hua Long A , Jian-Bin Fu A and Xiao-Yan Zhu AA College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, Hunan, China.
B Corresponding author. Email: yfanming@163.com
Australian Journal of Chemistry 73(11) 1051-1059 https://doi.org/10.1071/CH19541
Submitted: 28 October 2019 Accepted: 25 January 2020 Published: 31 March 2020
Abstract
In the present study, a new type of material of Zr-TSCD was first synthesized and modified with different amounts of triethylenetetramine (TETA). The properties of the adsorbents were characterised with X-ray diffraction, UV-vis diffuse reflectance spectroscopy, FT-IR spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, N2 adsorption–desorption, energy dispersion spectrum, and thermogravimetric analysis. The results suggested that Zr-TSCD (TSCD = Na3C6H5O7·2H2O) was successfully synthesized through the coordination of Zr atoms from ZrOCl2·8H2O and O species in –COO– groups. After functionalization with TETA, the structure of Zr-TSCD was preserved and the adsorption capacity of CO2 was enhanced dramatically. At 75°C, TETA(30)/Zr-TSCD achieved a maximum absorption capacity of 175.1 mg g−1 in a stream of 10 mL min−1 CO2. The adsorption capacity ratio of CO2/N2, CO2/O2, and CO2/SO2 was 10.5, 7.4, and 1.2, respectively. In addition, the adsorption capacity of CO2 remained stable during 10 adsorption–desorption cycles.
References
[1] S. Senthilkumar, R. Goswami, N. L. Obasi, S. Neogi, ACS Sustainable Chem. Eng. 2017, 5, 11307.| Crossref | GoogleScholarGoogle Scholar |
[2] M. J. Li, K. Huang, J. A. Schott, Z. L. Wu, S. Dai, Microporous Mesoporous Mater. 2017, 249, 34.
| Crossref | GoogleScholarGoogle Scholar |
[3] D. H. Lan, Y. X. Gong, N. Y. Tan, S. S. Wu, J. Shen, K. C. Yao, B. Yi, C. T. Au, S. F. Yin, Carbon 2018, 127, 245.
| Crossref | GoogleScholarGoogle Scholar |
[4] W. H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck, E. Fujita, Chem. Rev. 2015, 115, 12936.
| Crossref | GoogleScholarGoogle Scholar | 26335851PubMed |
[5] C. A. Trickett, A. Helal, B. A. Al-Maythalony, Z. H. Yamani, K. E. Cordova, Nat. Rev. Mater. 2017, 2, 17045.
| Crossref | GoogleScholarGoogle Scholar |
[6] X. L. Zhao, G. S. Hu, R. Z. Bai, J. Mater. Chem. A Mater. Energy Sustain. 2013, 1, 6208.
| Crossref | GoogleScholarGoogle Scholar |
[7] F. J. Song, Y. X. Zhao, Q. Zhong, J. Environ. Sci. 2013, 25, 554.
| Crossref | GoogleScholarGoogle Scholar |
[8] F. M. Yang, Y. Liu, L. Chen, C. T. Au, S. F. Yin, J. Chem. Technol. Biotechnol. 2016, 91, 2340.
| Crossref | GoogleScholarGoogle Scholar |
[9] A. Gholidoust, J. D. Atkinson, Z. Hashisho, Energy Fuels 2017, 31, 1756.
| Crossref | GoogleScholarGoogle Scholar |
[10] Y. Liu, B. Sajjadi, W. Y. Chen, Fuel 2019, 247, 10.
| Crossref | GoogleScholarGoogle Scholar |
[11] L. Keller, B. Ohs, J. Lenhart, Carbon 2018, 126, 338.
| Crossref | GoogleScholarGoogle Scholar |
[12] L. L. Rao, S. F. Liu, L. L. Wang, C. D. Ma, J. Y. Wu, Chem. Eng. J. 2019, 359, 428.
| Crossref | GoogleScholarGoogle Scholar |
[13] L. L. Rao, R. Ma, S. F. Liu, L. L. Wang, Z. Z. Wu, J. Yang, X. Hu, Chem. Eng. J. 2019, 362, 794.
| Crossref | GoogleScholarGoogle Scholar |
[14] L. Y. An, S. F. Liu, L. L. Wang, J. Y. Wu, Z. Z. Wu, C. D. Ma, Q. K. Yu, X. Hu, Ind. Eng. Chem. Res. 2019, 58, 3349.
| Crossref | GoogleScholarGoogle Scholar |
[15] L. M. Yue, L. L. Rao, L. L. Wang, L. Y. An, C. Y. Hou, C. D. Ma, H. DaCosta, X. Hu, Energy Fuels 2018, 32, 6955.
| Crossref | GoogleScholarGoogle Scholar |
[16] S. F. Liu, P. P. Yang, L. L. Wang, Y. L. Li, Z. Z. Wu, R. Ma, J. Y. Wu, X. Hu, Energy Fuels 2019, 33, 6568.
| Crossref | GoogleScholarGoogle Scholar |
[17] M. J. Lashaki, A. Sayari, Chem. Eng. J. 2018, 334, 1260.
| Crossref | GoogleScholarGoogle Scholar |
[18] R. Kishor, A. K. Ghoshal, Ind. Eng. Chem. Res. 2017, 56, 6078.
| Crossref | GoogleScholarGoogle Scholar |
[19] S. Ahmed, A. Ramli, S. Yusup, Int. J. Greenh. Gas Control 2016, 51, 230.
| Crossref | GoogleScholarGoogle Scholar |
[20] W. Wang, J. Motuzas, X. S. Zhao, J. C. D. D. Costa, Ind. Eng. Chem. Res. 2018, 57, 5653.
| Crossref | GoogleScholarGoogle Scholar |
[21] M. Kang, D. W. Kang, C. S. Hong, Dalton Trans. 2019, 48, 2263.
| Crossref | GoogleScholarGoogle Scholar | 30693920PubMed |
[22] S. Gaikwad, S. J. Kilm, S. Han, Microporous Mesoporous Mater. 2019, 277, 253.
| Crossref | GoogleScholarGoogle Scholar |
[23] J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos, G. N. Karanikolos, Microporous Mesoporous Mater. 2018, 267, 53.
| Crossref | GoogleScholarGoogle Scholar |
[24] N. Chanut, S. Bourrelly, B. Kuchta, C. Serre, J. S. Chang, P. A. Wright, P. L. Llewellyn, ChemSusChem 2017, 10, 1543.
| Crossref | GoogleScholarGoogle Scholar | 28252246PubMed |
[25] M. H. Alkordi, R. R. Haikal, Y. S. Hassan, A. H. Emwas, Y. Belmabkhout, J. Mater. Chem. A Mater. Energy Sustain. 2015, 3, 22584.
| Crossref | GoogleScholarGoogle Scholar |
[26] F. M. Yang, Y. Liu, L. Chen, C. T. Au, S. F. Yin, Aust. J. Chem. 2015, 68, 1427.
| Crossref | GoogleScholarGoogle Scholar |
[27] Z. H. Zhang, L. Yin, Y. M. Wang, Catal. Commun. 2007, 8, 1126.
| Crossref | GoogleScholarGoogle Scholar |
[28] H. Firouzabadi, N. Iranpoor, M. Jafarpour, A. Ghaderi, J. Mol. Catal. Chem. 2006, 252, 150.
| Crossref | GoogleScholarGoogle Scholar |
[29] A. Olea, E. S. Sanz-Perez, A. Arencibia, R. Sanz, G. Calleja, Adsorption 2013, 19, 589.
| Crossref | GoogleScholarGoogle Scholar |
[30] K. S. N. Kamarudin, N. Alias, Fuel Process. Technol. 2013, 106, 332.
| Crossref | GoogleScholarGoogle Scholar |
[31] Y. Guo, Z. Wang, H. Shao, Carbon 2013, 52, 583.
| Crossref | GoogleScholarGoogle Scholar |
[32] F. G. Cirujano, A. Corma, F. X. Llabrés i Xamena, Chem. Eng. Sci. 2015, 124, 52.
| Crossref | GoogleScholarGoogle Scholar |
[33] F. Rezaei, M. A. Sakwa-Novak, S. Bali, D. M. Duncanson, C. W. Jones, Microporous Mesoporous Mater. 2015, 204, 34.
| Crossref | GoogleScholarGoogle Scholar |
[34] X. Wang, Q. Guo, J. Zhao, L. Chen, Int. J. Greenh. Gas Control 2015, 37, 90.
| Crossref | GoogleScholarGoogle Scholar |
[35] C. Bao, L. Song, C. A. Wilkie, B. Yuan, Y. Q. Guo, Y. Hu, X. L. Gong, J. Mater. Chem. 2012, 22, 16399.
| Crossref | GoogleScholarGoogle Scholar |
[36] A. Singh, P. Kuppusami, S. Khan, C. Sudha, R. Thirumurugesan, R. Ramaseshan, R. Divakar, E. Mohandas, S. Dash, Appl. Surf. Sci. 2013, 280, 117.
| Crossref | GoogleScholarGoogle Scholar |
[37] S. Ahmed, A. Ramli, S. Yusup, Fuel Process. Technol. 2017, 167, 622.
| Crossref | GoogleScholarGoogle Scholar |
[38] Y. Kuwahara, D. Y. Kang, J. R. Copeland, J. Am. Chem. Soc. 2012, 134, 10757.
| Crossref | GoogleScholarGoogle Scholar | 22703027PubMed |
[39] H. Lin, M. Yavari, J. Membr. Sci. 2015, 475, 101.
| Crossref | GoogleScholarGoogle Scholar |
[40] R. Rodriguez-Mosqueda, H. Pfeiffer, J. Phys. Chem. A 2010, 114, 4535.
| Crossref | GoogleScholarGoogle Scholar | 20235586PubMed |
[41] Y. Zhao, Y. Shen, L. Bai, S. Q. Ni, Appl. Surf. Sci. 2012, 261, 708.
| Crossref | GoogleScholarGoogle Scholar |
[42] Y. Liao, S. W. Cao, Y. Yuan, Q. Gu, Z. Y. Zhang, C. Xue, Chem. – Eur. J. 2014, 20, 10220.
| Crossref | GoogleScholarGoogle Scholar | 25042886PubMed |
[43] P. Jackson, K. Robinson, G. Puxty, Energy Procedia 2009, 1, 985.
| Crossref | GoogleScholarGoogle Scholar |
[44] S. H. Liu, Y. Y. Huang, J. Clean. Prod. 2018, 175, 354.
| Crossref | GoogleScholarGoogle Scholar |
[45] M. G. Plaza, S. Garcia, F. Rubiera, J. J. Pis, C. Pevida, Separ. Purif. Tech. 2011, 80, 96.
| Crossref | GoogleScholarGoogle Scholar |