Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Amino Acid and Secondary Structure Integrity of Sonicated Milk Proteins

Rachana Pathak https://orcid.org/0000-0002-0563-9845 A C , Thomas S. H. Leong https://orcid.org/0000-0002-4338-6957 A C , Gregory J. O. Martin https://orcid.org/0000-0002-7099-7913 B C and Muthupandian Ashokkumar https://orcid.org/0000-0002-8442-1499 A C D
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of Melbourne, Parkville, Vic. 3010, Australia.

B Department of Chemical Engineering, The University of Melbourne, Parkville, Vic. 3010, Australia.

C The ARC Dairy Innovation Hub, The University of Melbourne, Parkville, Vic. 3010, Australia.

D Corresponding author. Email: masho@unimelb.edu.au

Australian Journal of Chemistry 73(3) 170-179 https://doi.org/10.1071/CH19372
Submitted: 2 August 2019  Accepted: 16 September 2019   Published: 23 October 2019

Abstract

This study investigated the effect of low-frequency (20 kHz) and high-frequency (414 kHz) ultrasound treatment on the amino acid and secondary structural integrity of dairy proteins. Sonicated skim milk proteins were hydrolysed and analysed with reverse-phase high-performance liquid chromatography to investigate the amino acid content of the processed samples. It was successfully demonstrated that both low-frequency and high-frequency ultrasound did not adversely affect the amino acid content, even after prolonged extreme processing conditions (6 h, 355 kHz). This finding was supplemented with protein secondary structure data (Fourier-transform (FT)-IR secondary derivatives of the amide I band, 1700–1600 cm−1) that showed that ultrasound was capable of causing structural modifications to the dairy proteins. This study shows that ultrasound can be used to influence protein–protein interactions in skim milk via alterations to the secondary structure without degrading the amino acids in the proteins.


References

[1]  M. Ashokkumar, R. Bhaskaracharya, S. Kentish, J. Lee, M. Palmer, B. Zisu, Dairy Sci. Technol. 2010, 90, 147.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  B. Zisu, R. Bhaskaracharya, S. Kentish, M. Ashokkumar, Ultrason. Sonochem. 2010, 17, 1075.
         | Crossref | GoogleScholarGoogle Scholar | 19948420PubMed |

[3]  T. Bosiljkov, B. Tripalo, M. Brnčić, D. Ježek, S. Karlović, I. Jagušt, Afr. J. Biotechnol. 2011, 10, 34.

[4]  B. Zisu, M. Sciberras, V. Jayasena, M. Weeks, M. Palmer, T. D. Dincer, Ultrason. Sonochem. 2014, 21, 2117.
         | Crossref | GoogleScholarGoogle Scholar | 24792784PubMed |

[5]  T. S. Leong, M. Zhou, D. Zhou, M. Ashokkumar, G. J. Martin, J. Food Eng. 2018, 219, 81.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  D. Bermúdez-Aguirre, T. Mobbs, G. V. Barbosa-Cánovas, in Ultrasound Technologies for Food and Bioprocessing (Eds H. Feng, G. Barbosa-Canovas, J. Weiss) 2011, pp. 65–105 (Springer: New York, NY).

[7]  M. Ashokkumar, J. Lee, B. Zisu, R. Bhaskarcharya, M. Palmer, S. Kentish, J. Dairy Sci. 2009, 92, 5353.
         | Crossref | GoogleScholarGoogle Scholar | 19841194PubMed |

[8]  B. Zisu, M. Schleyer, J. Chandrapala, Int. Dairy J. 2013, 31, 41.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  M. Ashokkumar, T. J. Mason, in Kirk‐Othmer Encyclopedia of Chemical Technology 2000, Sonochemistry, pp. 1–34 (John Wiley & Sons: Hoboken, NJ).

[10]  M. A. Augustin, P. Udabage, Adv. Food Nutr. Res. 2007, 53, 1.
         | Crossref | GoogleScholarGoogle Scholar | 17900495PubMed |

[11]  (a) H. D. Goff, Int. Dairy J. 1997, 7, 363.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. Govin, J. Leeder, J. Food Sci. 1971, 36, 718.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  E. Parnell-Clunies, Y. Kakuda, J. Deman, F. Cazzola, J. Dairy Sci. 1988, 71, 582.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  N. Parris, J. M. Purcell, S. M. Ptashkin, J. Agric. Food Chem. 1991, 39, 2167.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  J. Chandrapala, B. Zisu, S. Kentish, M. Ashokkumar, Food Res. Int. 2012, 48, 940.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  S. G. Borad, A. Kumar, A. K. Singh, Crit. Rev. Food Sci. Nutr. 2017, 57, 3690.
         | Crossref | GoogleScholarGoogle Scholar | 27052328PubMed |

[16]  H. Yang, S. Yang, J. Kong, A. Dong, S. Yu, Nat. Protoc. 2015, 10, 382.
         | Crossref | GoogleScholarGoogle Scholar | 25654756PubMed |

[17]  D. Nelson, M. Cox, Principles of Biochemistry 2008 (Palgrave Macmillan: New York, NY).

[18]  J. N. Coupland, D. J. McClements, Trends Food Sci. Technol. 1996, 7, 83.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  K. M. Schaich, in Oxidative Stability and Shelf Life of Foods Containing Oils and Fats (Eds M. Hu, C. Jacobsen) 2016, Ch. 1, pp. 1–131 (Elsevier: Amsterdam).

[20]  D. C. Kang, Y. H. Zou, Y. P. Cheng, L. J. Xing, G. H. Zhou, W. G. Zhang, Ultrason. Sonochem. 2016, 33, 47.
         | Crossref | GoogleScholarGoogle Scholar | 27245955PubMed |

[21]  J. Stadnik, Z. Dolatowski, in 54th International Congress of Meat Science and Technology 2008, Vol. 10, pp. 1–3.

[22]  H. Esterbauer, R. J. Schaur, H. Zollner, Free Radic. Biol. Med. 1991, 11, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1937131PubMed |

[23]  P. Juliano, A. E. Torkamani, T. Leong, V. Kolb, P. Watkins, S. Ajlouni, T. K. Singh, Ultrason. Sonochem. 2014, 21, 2165.
         | Crossref | GoogleScholarGoogle Scholar | 24704065PubMed |

[24]  M. Villamiel, P. de Jong, J. Agric. Food Chem. 2000, 48, 472.
         | Crossref | GoogleScholarGoogle Scholar | 10691659PubMed |

[25]  C. Carrera, A. Ruiz-Rodríguez, M. Palma, C. G. Barroso, Ultrason. Sonochem. 2015, 22, 499.
         | Crossref | GoogleScholarGoogle Scholar | 24927904PubMed |

[26]  A. Shanmugam, J. Chandrapala, M. Ashokkumar, Innov. Food Sci. Emerg. Technol. 2012, 16, 251.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  M. Ashokkumar, D. Sunartio, S. Kentish, R. Mawson, L. Simons, K. Vilkhu, C. Versteeg, Innov. Food Sci. Emerg. Technol. 2008, 9, 155.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  E. Stadtman, R. Levine, Amino Acids 2003, 25, 207.
         | Crossref | GoogleScholarGoogle Scholar | 14661084PubMed |

[29]  P. Trouillas, J. Bergès, C. Houée‐Lévin, Int. J. Quantum Chem. 2011, 111, 1143.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  R. L. Levine, L. Mosoni, B. S. Berlett, E. R. Stadtman, Proc. Natl. Acad. Sci. USA 1996, 93, 15036.
         | Crossref | GoogleScholarGoogle Scholar | 8986759PubMed |

[31]  W. Wu, Z. Wang, P. Cong, T. Li, BioData Min. 2017, 10, 1.
         | Crossref | GoogleScholarGoogle Scholar | 28127402PubMed |

[32]     (a) P. F. Fox, P. L. McSweeney, L. Paul, Advanced Dairy Chemistry, Vol 1. 1998 (Springer: New York, NY).
         (b) I. Recio, F. J. Moreno, R. López-Fandiño, in Dairy-Derived Ingredients (Ed. M. Corredig) 2009, pp. 170–211 (Elsevier: Amsterdam).

[33]  (a) G. Cervato, R. Cazzola, B. Cestaro, Int. J. Food Sci. Nutr. 1999, 50, 291.
         | Crossref | GoogleScholarGoogle Scholar | 10719575PubMed |
      (b) H. Lindmark-Månsson, B. Åkesson, Br. J. Nutr. 2000, 84, 103.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Taylor, T. Richardson, J. Dairy Sci. 1980, 63, 1938.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  M. Jackson, H. H. Mantsch, Crit. Rev. Biochem. Mol. Biol. 1995, 30, 95.
         | Crossref | GoogleScholarGoogle Scholar | 7656562PubMed |

[35]  G. Zandomeneghi, M. R. Krebs, M. G. McCammon, M. Fändrich, Protein Sci. 2004, 13, 3314.
         | Crossref | GoogleScholarGoogle Scholar | 15537750PubMed |

[36]  K. C. Chou, M. Pottle, G. Némethy, H. A. Scheraga, J. Mol. Biol. 1982, 162, 89.
         | Crossref | GoogleScholarGoogle Scholar | 7154095PubMed |

[37]  D. Stanic‐Vucinic, M. Stojadinovic, M. Atanaskovic‐Markovic, J. Ognjenovic, H. Grönlund, M. van Hage, R. Lantto, A. I. Sancho, T. Cirkovic Velickovic, Mol. Nutr. Food Res. 2012, 56, 1894.
         | Crossref | GoogleScholarGoogle Scholar | 23065770PubMed |

[38]  World Health Organization, Protein Quality Evaluation: Report of the Joint FAO/WHO Expert Consultation 1991 (Food and Agriculture Organization of the United Nations: Rome).

[39]  R. Marino, M. Iammarino, A. Santillo, M. Muscarella, M. Caroprese, M. Albenzio, J. Dairy Sci. 2010, 93, 2367.
         | Crossref | GoogleScholarGoogle Scholar | 20494144PubMed |

[40]  W. Long, Automated amino acid analysis using an Agilent Poroshell HPH-C18 column 2015. Available at http://www.agilent.com/cs/library/applications/5991-5571EN.pdf

[41]  M. S. Klausen, M. C. Jespersen, H. Nielsen, K. K. Jensen, V. I. Jurtz, C. K. Soenderby, M. O. A. Sommer, O. Winther, M. Nielsen, B. Petersen, P. Marcatili, Proteins 2019, 87, 520.
         | Crossref | GoogleScholarGoogle Scholar | 30785653PubMed |

[42]  The UniProt Consortium Nucleic Acids Res. 2019, 47, D506.
         | Crossref | GoogleScholarGoogle Scholar | 30395287PubMed |

[43]  (a) E. D. Chrysina, K. Brew, K. R. Acharya, J. Biol. Chem. 2000, 275, 37021.
         | Crossref | GoogleScholarGoogle Scholar | 10896943PubMed |
      (b) K. Kuwata, M. Hoshino, V. Forge, S. Era, C. A. Batt, Y. Goto, Protein Sci. 1999, 8, 2541.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. A. Majorek, P. J. Porebski, A. Dayal, M. D. Zimmerman, K. Jablonska, A. J. Stewart, M. Chruszcz, W. Minor, Mol. Immunol. 2012, 52, 174.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. A. Moore, B. F. Anderson, C. R. Groom, M. Haridas, E. N. Baker, J. Mol. Biol. 1997, 274, 222.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  Schrodinger, The PyMOL Molecular Graphics System, Version 2.3.2 2019 (Schrodinger: New York, NY).