Structural Systematics of Lanthanide(iii) Picrate Solvates: Hexamethylphosphoramide and Octamethylpyrophosphoramide Adducts
Eric J. Chan A , Jack M. Harrowfield A B D , Brian W. Skelton A , Alexandre N. Sobolev A and Allan H. White A CA School of Molecular Sciences, M310, University of Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia.
B Current address: Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8, allée Gaspard Monge, Strasbourg, 67083, France.
C Deceased.
D Corresponding author. Email: harrowfield@unistra.fr
Australian Journal of Chemistry 73(6) 477-487 https://doi.org/10.1071/CH19251
Submitted: 2 June 2019 Accepted: 27 August 2019 Published: 9 October 2019
Abstract
Crystalline products of the reactions of lanthanide picrates, Ln(pic)3 (pic = 2,4,6-trinitrophenoxide), with hexamethylphosphoramide (hmpa) and octamethylpyrophosphoramide (ompa) have been characterised by single-crystal X-ray diffraction studies. With hmpa and lighter lanthanides (La, Sm, Eu), isomorphous species (monoclinic, P21/c, Z 4) of stoichiometry [Ln(pic)3(hmpa)3]·0.5H2O, have been defined where the molecular units in the lattice contain 9-coordinate Ln with tricapped trigonal-prismatic coordination geometry. The picrate ligands are bidentate through phenoxide-O and 2-nitro-O, with the latter occupying the capping positions, while the hmpa ligands are singly O-bound to one trigonal face. Heavier lanthanides (Gd, Lu) and Y have been found to give isomorphous (monoclinic, P21/n, Z 4) species of stoichiometry [Ln(pic)3(hmpa)2], with 8-coordinate Ln of an irregular geometry best considered as close to that of a bicapped trigonal-prism. The picrate ligands chelate in the same manner as in the lighter Ln complexes but with one spanning a trigonal edge, and the hmpa-O donors occuping two apices of the other trigonal face. The ligand ompa has been found to act as a bidentate chelate in all isolated species, displacing one picrate from the metal ion coordination sphere to give ionic complexes. For La, Nd, and Gd, isomorphous (monoclinic, P21/n, Z 4) complexes of stoichiometry [Ln(pic)2(ompa)2(OH2)](pic)·0.5H2O containing 9-coordinate, tricapped trigonal-prismatic Ln with a single aqua ligand have been defined, while for Er, Yb, Lu, and Y, both the coordinated and lattice water molecules are lost in isomorphous (monoclininc, P21/c, Z 8) 8-coordinate, square-antiprismatic species of stoichiometry [Ln(pic)2(ompa)2](pic). For Er, further polymorphs, one monoclinic, P21/c, and the other triclinic, , have also been characterised.
References
[1] P. L. Goggin, in Comprehensive Coordination Chemistry (Eds G. Wilkinson, R. D. Gillard, J. A. McCleverty) 1987, Vol. 2, Ch. 15.8, pp. 487–503 (Pergamon Books: Oxford).[2] (a) See, for example (for hmpa): J. T. E. Donoghue, R. S. Drago, Inorg. Chem. 1962, 1, 866.1963, 2, 572–576, 1158.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. T. E. Donoghue, D. A. Peters, J. Inorg. Nucl. Chem. 1969, 31, 467.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. T. E. Donoghue, E. Fernandez, J. A. McMillan, D. A. Peters, J. Inorg. Nucl. Chem. 1969, 31, 1431.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. Imamoto, Y. Yamanoi, H. Tsuruta, K. Yamaguchi, M. Yamazaki, I. Mikio, J. Inanaga, Chem. Lett. 1995, 24, 949.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. G. Silva, G. Vincentini, J. D. Ayala, C. Bargerato, E. E. Castellano, An. Assoc. Brasil. Quim. 1995, 44, 1.
(f) E. Galdecka, Z. Galdecki, E. Huskowska, V. Amirkhanov, J. Legnediewicz, J. Alloys Compd. 1997, 257, 182.
| Crossref | GoogleScholarGoogle Scholar |
(g) V. S. Oliveira, D. M. A. Melo, Z. Rocha da Silva, L. B. Zinner, K. Zinner, J. Alloys Compd. 2000, 303–304, 157.
| Crossref | GoogleScholarGoogle Scholar |
(h) K. Asakura, T. Imamoto, Bull. Chem. Soc. Jpn. 2001, 74, 731.
| Crossref | GoogleScholarGoogle Scholar |
(i) A. Torvisco, K. Ruhlandt-Senge, Organometallics 2011, 30, 986.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) See, for example (for ompa): M. D. Joesten, K. M. Nykerk, Inorg. Chem. 1964, 3, 548.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. J. Popp, M. D. Joesten, Inorg. Chem. 1965, 4, 1418.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. A. Sylvanovich, S. K. Madan, J. Inorg. Nucl. Chem. 1972, 34, 2569.
| Crossref | GoogleScholarGoogle Scholar |
[4] All these properties are listed on MSDS sheets. The International Agency for Research on Cancer (IARC, a World Health Organisation subsidiary) lists (Vol. 71, p. 1465) hmpa only as possibly carcinogenic to humans, though shown to be so in experimental animals. See, nonetheless, refs [5] and [6].
[5] J. Ashby, J. A. Styles, D. Paton, Br. J. Cancer 1978, 38, 418.
| Crossref | GoogleScholarGoogle Scholar | 708573PubMed |
[6] J. R. Thorton-Manning, K. J. Nikula, J. A. Hotchkiss, K. J. Avila, K. D. Rohrbacher, X. Ding, A. R. Dahl, Toxicol. Appl. Pharmacol. 1997, 142, 22.
| Crossref | GoogleScholarGoogle Scholar |
[7] G. A. Molander, C. R. Harris, Chem. Rev. 1996, 96, 307.
| Crossref | GoogleScholarGoogle Scholar | 11848755PubMed |
[8] (a) F. Aulenta, A. Hölemann, H.-U. Reissig, Eur. J. Org. Chem. 2006, 1733.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Larsen, R. J. Enermarke, T. Skrydstrup, K. Daasbjerg, Organometallics 2006, 25, 2031. and references therein
| Crossref | GoogleScholarGoogle Scholar |
[9] P. C. Andrews, M. Minopoulos, E. G. Robertson, Eur. J. Inorg. Chem. 2006, 2865.and references therein. Note that mention is made of the possible carcinogenicity of hmpa.
| Crossref | GoogleScholarGoogle Scholar |
[10] S. Petricek, Acta Chim. Slov. 2005, 52, 398.
[11] J. M. Harrowfield, B. W. Skelton, A. H. White, F. R. Wilner, Inorg. Chim. Acta 2004, 357, 2358.
| Crossref | GoogleScholarGoogle Scholar |
[12] E. J. Chan, J. M. Harrowfield, B. W. Skelton, A. N. Sobolev, A. H. White, Aust. J. Chem. 2019,
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) R. D. Wijesekera, A. M. Sargeson, J. Coord. Chem. 2005, 58, 3.
| Crossref | GoogleScholarGoogle Scholar |
(b) P. Hendry, A. M. Sargeson, Prog. Inorg. Chem. 1990, 38, 201.
[14] S. Petricek, Z. Anorg. Allg. Chem. 2005, 631, 1947.
| Crossref | GoogleScholarGoogle Scholar |
[15] H. Tsuruta, K. Yamaguchi, T. Imamoto, Tetrahedron 2003, 59, 10419.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) Y. Kitamura, J. Sumaoka, M. Komiyama, Tetrahedron 2003, 59, 10403.
| Crossref | GoogleScholarGoogle Scholar |
(b) H.-J. Schneider, A. K. Yatsimirsky, in Metal Ions in Biological Systems (Eds A. Sigel, H. Sigel) 2003, Vol. 40, Ch. 11, pp. 369–462 (Marcel Dekker: Basel). See also Chs 12 (M. Komiyama) and 13 (R. K. O. Sigel, A. M. Pyle).
[17] H. Furuno, T. Hayano, T. Kambara, Y. Sugimoto, T. Hanamoto, Y. Tanaka, Y. Z. Jin, T. Kagawa, J. Inanaga, Tetrahedron 2003, 59, 10509.
| Crossref | GoogleScholarGoogle Scholar |
[18] L. Daumann, Angew. Chem. Int. Ed. 2019, 58, 12795.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) J. M. Harrowfield, W. Lu, B. W. Skelton, A. H. White, Aust. J. Chem. 1994, 47, 321.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. M. Harrowfield, W. Lu, B. W. Skelton, A. H. White, Aust. J. Chem. 1994, 47, 339.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. M. Harrowfield, W. Lu, B. W. Skelton, A. H. White, Aust. J. Chem. 1994, 47, 349.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. M. Harrowfield, B. W. Skelton, A. H. White, Aust. J. Chem. 1994, 47, 359.
| Crossref | GoogleScholarGoogle Scholar |
[20] J. Harrowfield, J. Chem. Soc., Dalton Trans. 1996, 3165.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) E. J. Chan, S. A. Cotton, J. M. Harrowfield, B. W. Skelton, A. N. Sobolev, A. H. White, Aust. J. Chem. 2019,
| Crossref | GoogleScholarGoogle Scholar |
(b) A. G. Silva, G. Vicentini, J. Zukerman-Schpector, E. E. Castellano, J. Alloys Compd. 1995, 225, 354.
| Crossref | GoogleScholarGoogle Scholar |
[22] E. J. Chan, J. M. Harrowfield, B. W. Skelton, A. N. Sobolev, A. H. White, Aust. J. Chem. 2019,
| Crossref | GoogleScholarGoogle Scholar |
[23] A. G. Silva, G. Vicentini, J. Zukerman-Schpector, E. E. Castellano, J. Alloys Compd. 1995, 225, 354.
| Crossref | GoogleScholarGoogle Scholar |
[24] See ref. [2e] but note that coordinates for the structures are unavailable.
[25] Z. Asfari, E. J. Chan, J. M. Harrowfield, B. W. Skelton, A. N. Sobolev, P. Thuéry, A. H. White, Aust. J. Chem. 2019,
| Crossref | GoogleScholarGoogle Scholar |
[26] G. M. Sheldrick, Acta Crystallogr. C Struct. Chem. 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar | 25567568PubMed |
[27] F. Cataldo, Eur. Chem. Bull. 2015, 4, 92.
[28] (a) I. Persson, P. D’Angelo, S. De Panfilis, M. Sandström, L. Eriksson, Chem. – Eur. J. 2008, 14, 3056.
| Crossref | GoogleScholarGoogle Scholar | 18283700PubMed |
(b) J. M. Harrowfield, D. L. Kepert, J. M. Patrick, A. H. White, Aust. J. Chem. 1983, 36, 483.
| Crossref | GoogleScholarGoogle Scholar |
[29] D. Parker, H. Puschmann, A. S. Batsanov, K. Senanayake, Inorg. Chem. 2003, 42, 8646.
| Crossref | GoogleScholarGoogle Scholar | 14686841PubMed |
[30] P. R. Schreiner, L. V. Chernish, P. A. Gunchenko, E. Tikhonchuk, H. Hausmann, M. Serafin, S. Schlecht, J. E. P. Dahl, R. M. K. Carlson, A. A. Fokin, Nature 2011, 477, 308.
| Crossref | GoogleScholarGoogle Scholar | 21921913PubMed |
[31] See Chapter 13, pp. 162–168 in: D. L. Kepert, Inorganic Stereochemistry 1982 (Springer-Verlag: Berlin).
[32] C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman, IUCrJ 2017, 4, 575.
| Crossref | GoogleScholarGoogle Scholar | 28932404PubMed |
[33] S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, CrystalExplorer 2012 (University of Western Australia: Perth).