Allan White and Solvento/Aqua Complexes: ScIII Solvation
Eric J. Chan A , Simon A. Cotton B , Jack M. Harrowfield A C E , Brian W. Skelton A , Alexandre N. Sobolev A and Allan H. White A DA School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Highway, Perth, WA 6009, Australia.
B School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
C Current address: Institut de Science et d’Ingenierie Supramoléculaires, Université de Strasbourg, 8, allée Gaspard Monge, 67083 Strasbourg, France.
D Deceased.
E Corresponding author. Email: harrowfield@unistra.fr
Australian Journal of Chemistry 73(6) 468-476 https://doi.org/10.1071/CH19130
Submitted: 21 March 2019 Accepted: 6 June 2019 Published: 4 July 2019
Abstract
Addition of various oxygen-donor ligands (L, all dipolar, aprotic solvents), to a solution of hydrated scandium picrate in weakly coordinating solvents (S), has yielded several crystalline adducts of the form Sc(pic)3(L)m(·nS) in which all ligands L are coordinated, subsequently characterised by a series of single crystal X-ray studies. For L = dmso, m = 3 and the picrate anions are all bound as phenoxide-O donor units, while for nmp, dma, tmp, and hmpa, m = 2 and one of the bound picrates becomes bidentate through phenoxide- and nitro-O donation. For L = ompa, m = 2 and two picrate ligands are bound through phenoxide-O while one is displaced from the primary coordination sphere. All complexes contain six-coordinate ScIII, confirming that this coordination number is a consequence of ligand bulk.
References
[1] S. F. Lincoln, Helv. Chim. Acta 2005, 88, 523.| Crossref | GoogleScholarGoogle Scholar |
[2] (a) S. A. Cotton, Comments Inorg. Chem. 2018, 38, 110.
| Crossref | GoogleScholarGoogle Scholar |
(b) See pp. 4838–4877 in: S. A. Cotton, Scandium, Yttrium and the Lanthanides: Inorganic and Coordination Chemistry, Encyclopedia of Inorganic Chemistry 2006 (John Wiley and Sons: New York, NY).
(c) S. A. Cotton, in Comprehensive Coordination Chemistry II (Eds J. A. McCleverty, T. J. Meyer) 2004, Vol. 3, pp. 93–188 (Elsevier: Amsterdam).
[3] W. B. Jensen, J. Chem. Educ. 1982, 59, 634.
| Crossref | GoogleScholarGoogle Scholar |
[4] R. D. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) K. C. Lim, B. W. Skelton, A. H. White, Aust. J. Chem. 2000, 53, 875.
| Crossref | GoogleScholarGoogle Scholar |
(b) T. J. Boyle, F. A. Fasulo, R. E. Cramer, J. M. Sears, Polyhedron 2019, 162, 111.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) M. Sandström, I. Persson, F. Jalilehvand, P. Lindquist-Reis, D. Spångberg, K. Hermansson, J. Synchrotron Radiat. 2001, 8, 657.
| Crossref | GoogleScholarGoogle Scholar | 11512885PubMed |
(b) P. Lindqvist-Reis, Structure of Solvated Metal Ions 2000, Ph.D. thesis, Royal Institute of Technology (KTH), Stockholm, Sweden.
[7] C. Platas-Iglesias, L. Vaiana, D. Esteban-Gomez, F. Avecilla, J. A. Real, A. De Blas, T. Rodriguez-Blas, Inorg. Chem. 2005, 44, 9704.
| Crossref | GoogleScholarGoogle Scholar | 16363839PubMed |
[8] J. M. Harrowfield, B. W. Skelton, A. H. White, Aust. J. Chem. 1994, 47, 397.
| Crossref | GoogleScholarGoogle Scholar |
[9] M. C. Sanchez, P. C. Isolani, J. Zukerman-Schpector, G. Vicentini, J. Alloys Compd. 2002, 344, 298.
| Crossref | GoogleScholarGoogle Scholar |
[10] S. A. Cotton, C. R. Chim. 2005, 8, 129.
| Crossref | GoogleScholarGoogle Scholar |
[11] J. M. Harrowfield, in Metal Ions in Biological Systems (Eds A. Sigel, H. Sigel) 2003, Vol. 40, Ch. 4, pp. 105–159 (Marcel Dekker: New York, NY).
[12] K.-Z. Tang, J. Zhang, Y. Tang, W.-S. Liu, M.-Y. Tan, Y.-X. Sun, Inorg. Chim. Acta 2006, 359, 1207.
| Crossref | GoogleScholarGoogle Scholar |
[13] Y.-W. Wang, W.-S. Liu, K.-B. Yu, Z. Anorg. Allg. Chem. 2006, 632, 482.
| Crossref | GoogleScholarGoogle Scholar |
[14] Y. Tang, K.-Z. Tang, J. Zhang, C.-Y. Su, W.-S. Liu, M.-Y. Tan, Inorg. Chem. Commun. 2005, 8, 1018.
| Crossref | GoogleScholarGoogle Scholar |
[15] S.-S. Yun, S. W. Kang, H.-R. Suh, H.-S. Suh, E. K. Lee, J.-K. Kim, C. H. Kim, Bull. Korean Chem. Soc. 2005, 26, 1197.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) R. P. Sharma, R. Sharma, R. Bala, P. Venugolopalan, J. Coord. Chem. 2005, 58, 899.
| Crossref | GoogleScholarGoogle Scholar |
(b) R. P. Sharma, R. Sharma, R. Bala, A. D. Bond, Acta Crystallogr. Sect. C 2005, 61, m272.
| Crossref | GoogleScholarGoogle Scholar |
[17] M. I. Saleh, E. Kusrini, R. Adnan, I. A. Rahman, B. Saad, A. Usman, H.-K. Fun, B. M. Yamin, J. Chem. Crystallogr. 2005, 35, 469.
| Crossref | GoogleScholarGoogle Scholar |
[18] F. Arnaud-Neu, J. M. Harrowfield, S. Michel, B. W. Skelton, A. H. White, Supramol. Chem. 2005, 17, 609.
| Crossref | GoogleScholarGoogle Scholar |
[19] J. M. Harrowfield, B. W. Skelton, A. H. White, C. R. Chim. 2005, 8, 169.
| Crossref | GoogleScholarGoogle Scholar |
[20] K. Honda, H. Yamawaki, M. Matsukawa, M. Goto, T. Matsunaga, K. Aoki, M. Yoshida, S. Fujiwara, Acta Crystallogr. Sect. C 2003, 59, m319.
| Crossref | GoogleScholarGoogle Scholar |
[21] M. C. C. Cardoso, L. B. Zinner, J. Zuckerman-Schpector, D. M. Araujo Melo, G. Vicentini, J. Alloys Compd. 2001, 323–324, 22.
| Crossref | GoogleScholarGoogle Scholar |
[22] P. Miranda, J. Zukerman-Schpector, P. C. Isolani, G. Vicentini, L. B. Zinner, J. Alloys Compd. 2001, 323–324, 13.
| Crossref | GoogleScholarGoogle Scholar |
[23] P. Miranda, C. C. Carvalho, J. Zukerman-Schpector, P. C. Isolani, G. Vicentini, L. B. Zinner, J. Alloys Compd. 2000, 303–304, 162.
| Crossref | GoogleScholarGoogle Scholar |
[24] B. Ji, Z. Zhou, K. Ding, Y. Li, Polyhedron 1998, 17, 4327.
| Crossref | GoogleScholarGoogle Scholar |
[25] J. D. Ayala, G. Bombieri, A. Del Pra, A. Fantoni, G. Vicentini, Inorg. Chim. Acta 1998, 274, 122.
| Crossref | GoogleScholarGoogle Scholar |
[26] Z. Zhou, W.-C. Zheng, Y.-Z. Li, Z.-H. Mao, W.-C. Zhou, Z. Hong, Polyhedron 1996, 15, 3519.
| Crossref | GoogleScholarGoogle Scholar |
[27] P. D. Beer, M. G. B. Drew, P. B. Leeson, M. I. Ogden, Inorg. Chim. Acta 1996, 246, 133.
| Crossref | GoogleScholarGoogle Scholar |
[28] J. M. Harrowfield, J. Chem. Soc., Dalton Trans. 1996, 3165.and references therein.
| Crossref | GoogleScholarGoogle Scholar |
[29] J. D. Ayala, G. Vicentini, G. Bombieri, J. Alloys Compd. 1995, 225, 357.and references therein.
| Crossref | GoogleScholarGoogle Scholar |
[30] A. G. Silva, G. Vicentini, J. Zukerman-Schpector, E. E. Castellano, J. Alloys Compd. 1995, 225, 354.
| Crossref | GoogleScholarGoogle Scholar |
[31] L. Troxler, G. Wipff, J. M. Harrowfield, J. Phys. Chem. A 1998, 102, 6821.
| Crossref | GoogleScholarGoogle Scholar |
[32] E. J. Chan, S. Grabowsky, J. M. Harrowfield, M. W. Shi, B. W. Skelton, A. N. Sobolev, A. H. White, CrystEngComm 2014, 16, 4508.and references therein.
| Crossref | GoogleScholarGoogle Scholar |
[33] M. L. Waters, Acc. Chem. Res. 2013, 46, 873.and following articles.
| Crossref | GoogleScholarGoogle Scholar | 23586328PubMed |
[34] A. J. Edwards, C. F. McKenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman, Faraday Discuss. 2017, 203, 93.
| Crossref | GoogleScholarGoogle Scholar | 28721418PubMed |
[35] R. Taylor, Cryst. Growth Des. 2016, 16, 4165.
| Crossref | GoogleScholarGoogle Scholar |
[36] A. Gavezzotti, CrystEngComm 2013, 15, 4027.
| Crossref | GoogleScholarGoogle Scholar |
[37] L. Loots, L. J. Barbour, CrystEngComm 2012, 14, 300.
| Crossref | GoogleScholarGoogle Scholar |
[38] Yu. E. Alexeev, B. I. Kharisov, T. C. Hernández García, A. D. Garnovskii, Coord. Chem. Rev. 2010, 254, 794.
| Crossref | GoogleScholarGoogle Scholar |
[39] H.-J. Schneider, Angew. Chem. Int. Ed. 2009, 48, 3924.
| Crossref | GoogleScholarGoogle Scholar |
[40] K. Reichenbächer, H. I. Süss, J. Hulliger, Chem. Soc. Rev. 2005, 34, 22.
| Crossref | GoogleScholarGoogle Scholar | 15643487PubMed |
[41] E. A. Meyer, R. K. Castellano, F. Diederich, Angew. Chem. Int. Ed. 2003, 42, 1211.
[42] S. F. Alshahateet, R. Bishop, D. C. Craig, M. L. Scudder, CrystEngComm 2001, 3, 225.
| Crossref | GoogleScholarGoogle Scholar |
[43] G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, A64, 112.
| Crossref | GoogleScholarGoogle Scholar |
[44] E. J. Chan, B. G. Cox, J. M. Harrowfield, M. I. Ogden, B. W. Skelton, A. H. White, Inorg. Chim. Acta 2004, 357, 2365.
| Crossref | GoogleScholarGoogle Scholar |
[45] J. M. Harrowfield, D. Matt, J. Incl. Phenom. Macrocycl. Chem. 2004, 50, 133.and references therein.
| Crossref | GoogleScholarGoogle Scholar |
[46] C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman, IUCrJ 2017, 4, 575.
| Crossref | GoogleScholarGoogle Scholar | 28932404PubMed |
[47] J. M. Harrowfield, B. J. Peachey, B. W. Skelton, A. H. White, Aust. J. Chem. 1995, 48, 1349.
| Crossref | GoogleScholarGoogle Scholar |
[48] (a) M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11, 19.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. A. Spackman, Phys. Scr. 2013, 87, 048103.
| Crossref | GoogleScholarGoogle Scholar |
[49] S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, CrystalExplorer 3.1 2012 (University of Western Australia: Perth).
[50] J. W. G. Bloom, S. E. Wheeler, Angew. Chem. Int. Ed. 2011, 50, 7847.
| Crossref | GoogleScholarGoogle Scholar |
[51] C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885.
| Crossref | GoogleScholarGoogle Scholar |
[52] P. M. Zorky, O. V. Grineva, J. Incl. Phenom. Macrocycl. Chem. 2004, 48, 81.
| Crossref | GoogleScholarGoogle Scholar |
[53] J. M. Harrowfield, B. W. Skelton, A. H. White, F. R. Wilner, Inorg. Chim. Acta 2004, 357, 2358.
| Crossref | GoogleScholarGoogle Scholar |
[54] H. Suzuki, S.-I. Ishiguro, Acta Crystallogr. Sect. C 1998, 54, 586.
| Crossref | GoogleScholarGoogle Scholar |
[55] M. S. Hussain, M. D. Joesten, P. G. Lenhert, Inorg. Chem. 1970, 9, 162.
| Crossref | GoogleScholarGoogle Scholar |
[56] M. D. Joesten, M. S. Hussain, P. G. Lenhert, Inorg. Chem. 1970, 9, 151.
| Crossref | GoogleScholarGoogle Scholar |
[57] J. D. Dunitz, A. Gavezzotti, J. Phys. Chem. B 2012, 116, 6740.
| Crossref | GoogleScholarGoogle Scholar | 22360776PubMed |
[58] J. D. Dunitz, A. Gavezzotti, Angew. Chem. Int. Ed. 2005, 44, 1766.
| Crossref | GoogleScholarGoogle Scholar |
[59] M. Henry, ChemPhysChem 2002, 3, 561.
| Crossref | GoogleScholarGoogle Scholar | 12503156PubMed |
[60] G. Meyer, S. Stockhouse, Z. Kristallogr. 1994, 209, 180.
[61] X.-Z. Feng, A.-L. Guo, Y.-T. Xu, X.-F. Li, P.-N. Sun, Polyhedron 1987, 6, 1041.
| Crossref | GoogleScholarGoogle Scholar |
[62] J. Marçalo, A. Pires de Matos, Polyhedron 1989, 8, 2431.
| Crossref | GoogleScholarGoogle Scholar |
[63] J. F. K. Kotyk, C. M. Hanna, R. L. Combs, J. W. Ziller, J. Y. Yang, Chem. Sci. 2018, 9, 2750.
| Crossref | GoogleScholarGoogle Scholar |
[64] X. Solans, M. Font-Altaba, J. Garcia-Oricain, Acta Crystallogr. Sect. C 1984, 40, 635.
| Crossref | GoogleScholarGoogle Scholar |
[65] T. J. King, N. Logan, A. Morris, S. C. Wallwork, J. Chem. Soc. D, Chem. Comm. 1971, 554.
| Crossref | GoogleScholarGoogle Scholar |
[66] L. J. Blackwell, E. K. Nunn, S. C. Wallwork, J. Chem. Soc., Dalton Trans. 1975, 2068.
| Crossref | GoogleScholarGoogle Scholar |
[67] Y.-W. Zhang, Z.-M. Wang, J.-T. Jia, C.-S. Liao, C.-H. Yan, Acta Crystallogr. Sect. C 1999, 55, 1418.
| Crossref | GoogleScholarGoogle Scholar |