Contemplating 1,2,4-Thiadiazole-Inspired Cyclic Peptide Mimics: A Computational Investigation
Sida Xie A B , Paul V. Bernhardt A , Lawrence R. Gahan A C and Craig M. Williams A CA School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.
B College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China.
C Corresponding authors. Email: gahan@uq.edu.au; c.williams3@uq.edu.au
Australian Journal of Chemistry 72(11) 894-899 https://doi.org/10.1071/CH19248
Submitted: 1 June 2019 Accepted: 1 July 2019 Published: 30 July 2019
Abstract
Marine derived cyclic peptides have inspired chemists for decades as the cavitand architecture can be compared with macrocyclic ligands, and hence easily conceived as mediators of metal-ion transport. Lissoclinamide 5 and ascidiacyclamide are two such cyclic peptides that have received much attention both for their metal ion complexation properties and biological activity; the metal ion binding properties of mimics of these two systems have been reported. Reported herein is a computational study aimed at evaluating the stability, and potential for copper(ii) ion binding by lissoclinamide 5 mimics that substitute the naturally occurring 4-carboxy-1,3-thiazole units for novel valine- and phenylalanine-derived 1,2,4-thiadiazole units. Our results suggest that one lissoclinamide 5 mimic, 1,2,4-thiadiazole (TDA)-lissoclinamide 9, may be capable of forming a complex with one CuII ion, [Cu(9-H)(H2O)]+. A complex with two CuII ions, [Cu2(9-H)(μ-OH)]2+, was also considered. These results set the stage for synthetic and experimental metal binding studies.
References
[1] J. W. Blunt, B. R. Copp, R. A. Keyzers, M. H. G. Munro, M. R. Prinsep, Nat. Prod. Rep. 2015, 32, 116.| Crossref | GoogleScholarGoogle Scholar | 25620233PubMed |
[2] D. J. Faulkner, Nat. Prod. Rep. 2002, 19, 1.
| 11902436PubMed |
[3] D. Skropeta, L. Wei, Nat. Prod. Rep. 2014, 31, 999.
| Crossref | GoogleScholarGoogle Scholar | 24871201PubMed |
[4] J. W. Blunt, B. R. Copp, R. A. Keyzers, M. H. G. Munro, M. R. Prinsep, Nat. Prod. Rep. 2014, 31, 160.
| Crossref | GoogleScholarGoogle Scholar | 24389707PubMed |
[5] M. S. Butler, A. A. B. Robertson, M. A. Cooper, Nat. Prod. Rep. 2014, 31, 1612.
| Crossref | GoogleScholarGoogle Scholar | 25204227PubMed |
[6] T. L. Simmons, E. Andrianasolo, K. McPhail, P. Flatt, W. H. Gerwick, Mol. Cancer Ther. 2005, 4, 333.
| 15713904PubMed |
[7] S. A. Dyshlovoy, F. Honecker, Mar. Drugs 2015, 13, 5657.
| Crossref | GoogleScholarGoogle Scholar | 26540740PubMed |
[8] M. Jaspars, D. De Pascale, J. H. Andersen, F. Reyes, A. Crawford, A. Ianora, J. Mar. Biol. Assoc. U. K. 2016, 96, 151.
| Crossref | GoogleScholarGoogle Scholar |
[9] V. A. Stonik, S. N. Fedorov, Mar. Drugs 2014, 12, 636.
| Crossref | GoogleScholarGoogle Scholar | 24473167PubMed |
[10] Y. Zhou, Curr. Org. Chem. 2014, 18, 918.
| Crossref | GoogleScholarGoogle Scholar |
[11] P. Kiuru, M. V. D’Auria, C. D. Muller, P. Tammela, H. Vuorela, J. Yli-Kauhaluoma, Planta Med. 2014, 80, 1234.
| 25203732PubMed |
[12] L. A. Salvador-Reyes, H. Luesch, Nat. Prod. Rep. 2015, 32, 478.
| Crossref | GoogleScholarGoogle Scholar | 25571978PubMed |
[13] L. A. Salvador-Reyes, N. Engene, V. J. Paul, H. Luesch, J. Nat. Prod. 2015, 78, 486.
| Crossref | GoogleScholarGoogle Scholar | 25635943PubMed |
[14] L. T. Tan, Drug Discov. Today 2013, 18, 863.
| Crossref | GoogleScholarGoogle Scholar | 23711931PubMed |
[15] P. N. Leao, N. Engene, A. Antunes, W. H. Gerwick, V. Vasconcelos, Nat. Prod. Rep. 2012, 29, 372.
| Crossref | GoogleScholarGoogle Scholar | 22237837PubMed |
[16] J. Piel, Nat. Prod. Rep. 2009, 26, 338.
| Crossref | GoogleScholarGoogle Scholar | 19240945PubMed |
[17] Z. Jin, Nat. Prod. Rep. 2006, 23, 464.
| Crossref | GoogleScholarGoogle Scholar | 16741589PubMed |
[18] A. Bertram, G. Pattenden, Nat. Prod. Rep. 2007, 24, 18.
| Crossref | GoogleScholarGoogle Scholar | 17268606PubMed |
[19] J. P. Michael, G. Pattenden, Angew. Chem. Int. Ed. Engl. 1993, 32, 1.[Angew. Chem. 1993, 105, 1].
| Crossref | GoogleScholarGoogle Scholar |
[20] Y. Shi, W. Jiang, B. N. Auckloo, B. Wu, Curr. Org. Chem. 2015, 19, 1935.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. L. van den Brenk, D. P. Fairlie, L. R. Gahan, G. R. Hanson, T. W. Hambley, Inorg. Chem. 1996, 35, 1095.
| Crossref | GoogleScholarGoogle Scholar | 11666295PubMed |
[22] P. Comba, N. Dovalil, L. R. Gahan, G. R. Hanson, M. Westphal, Dalton Trans. 2014, 43, 1935.and references therein.
| Crossref | GoogleScholarGoogle Scholar | 24202205PubMed |
[23] P. Comba, A. Eisenschmidt, L. R. Gahan, D.-P. Herten, G. Nette, G. Schenk, M. Seefeld, Chem. – Eur. J. 2017, 23, 12264.
| Crossref | GoogleScholarGoogle Scholar | 28339125PubMed |
[24] P. Comba, A. Eisenschmidt, L. R. Gahan, G. R. Hanson, N. Mehrkens, M. Westphal, Dalton Trans. 2016, 45, 18931.
| Crossref | GoogleScholarGoogle Scholar | 27841434PubMed |
[25] S. Xie, A. I. Savchenko, M. Kerscher, R. L. Grange, E. H. Krenske, J. R. Harmer, M. J. Bauer, N. Broit, D. J. Watters, G. M. Boyle, P. V. Bernhardt, P. G. Parsons, P. Comba, L. R. Gahan, C. M. Williams, Eur. J. Org. Chem. 2018, 1465.
| Crossref | GoogleScholarGoogle Scholar |
[26] S. Xie, A. I. Savchenko, E. H. Krenske, R. L. Grange, L. R. Gahan, C. M. Williams, Eur. J. Org. Chem. 2018, 3265.
| Crossref | GoogleScholarGoogle Scholar |
[27] B. M. Degnan, C. J. Hawkins, M. F. Lavin, E. J. McCaffrey, D. L. Parry, A. L. Van den Brenk, D. J. Watters, J. Med. Chem. 1989, 32, 1349.
| Crossref | GoogleScholarGoogle Scholar | 2724305PubMed |
[28] C. M. Ireland, A. R. Durso, R. A. Newman, M. P. Hacker, J. Org. Chem. 1982, 47, 1807.
| Crossref | GoogleScholarGoogle Scholar |
[29] F. J. Schmitz, M. B. Ksebati, J. S. Chang, J. L. Wang, M. B. Hossain, D. Van der Helm, M. H. Engel, A. Serban, J. A. Silfer, J. Org. Chem. 1989, 54, 3463.
| Crossref | GoogleScholarGoogle Scholar |
[30] X. Fu, T. Do, F. J. Schmitz, V. Andrusevich, M. H. Engel, J. Nat. Prod. 1998, 61, 1547.
| Crossref | GoogleScholarGoogle Scholar | 9868162PubMed |
[31] M. A. Rashid, K. R. Gustafson, J. H. Cardellina, M. R. Boyd, J. Nat. Prod. 1995, 58, 594.
| Crossref | GoogleScholarGoogle Scholar | 7623037PubMed |
[32] Y. Hamamoto, M. Endo, M. Nakagawa, T. Nakanishi, K. Mizukawa, J. Chem. Soc. Chem. Commun. 1983, 323.
| Crossref | GoogleScholarGoogle Scholar |
[33] T. Ishida, M. Inoue, Y. Hamada, S. Kato, T. Shioiri, J. Chem. Soc. Chem. Commun. 1987, 370.
| Crossref | GoogleScholarGoogle Scholar |
[34] T. Ishida, M. Tanaka, M. Nabae, M. Inoue, S. Kato, Y. Hamada, T. Shioiri, J. Org. Chem. 1988, 53, 107.
| Crossref | GoogleScholarGoogle Scholar |
[35] See, for example, A. Asano, K. Minoura, T. Yamada, M. Doi, J. Pept. Sci. 2016, 22, 156.
| Crossref | GoogleScholarGoogle Scholar | 26856689PubMed |
[36] R. Zhao, S. Gove, J. E. Sundeen, B. C. Chen, Tetrahedron Lett. 2001, 42, 2101.
| Crossref | GoogleScholarGoogle Scholar |
[37] Our group has also published a synthetic route to 2-amino-1,3-thiazoles. See: L. A. Baker, C. M. Williams, J. Heterocycl. Chem. 2003, 40, 353.
| Crossref | GoogleScholarGoogle Scholar |
[38] M. S. Kerr, J. R. de Alaniz, T. Rovis, J. Org. Chem. 2005, 70, 5725.
| Crossref | GoogleScholarGoogle Scholar | 15989360PubMed |
[39] E. A. Merritt, M. C. Bagley, Synthesis 2007, 22, 3535.
[40] Y. Takikawa, K. Shimada, K. Sato, S. Sato, S. Takizawa, Bull. Chem. Soc. Jpn. 1985, 58, 995.
| Crossref | GoogleScholarGoogle Scholar |
[41] P. Comba, L. R. Gahan, G. R. Hanson, M. Westphal, Chem. Commun. 2012, 48, 9364.
| Crossref | GoogleScholarGoogle Scholar |
[42] P. Comba, L. R. Gahan, G. R. Hanson, M. Maeder, M. Westphal, Dalton Trans. 2014, 43, 3144.
| Crossref | GoogleScholarGoogle Scholar | 24326405PubMed |
[43] A. L. van den Brenk, K. A. Byriel, D. P. Fairlie, L. R. Gahan, G. R. Hanson, C. J. Hawkins, A. Jones, C. H. L. Kennard, B. Moubaraki, K. S. Murray, Inorg. Chem. 1994, 33, 3549.
| Crossref | GoogleScholarGoogle Scholar |
[44] (a) MacroModel, version 10.6 2014 (Schrödinger, LLC: New York, NY).
(b) Maestro, version 9.9 2014 (Schrödinger, LLC: New York, NY).
[45] (a) T. A. Halgren, J. Comput. Chem. 1996, 17, 490.
| Crossref | GoogleScholarGoogle Scholar |
(b) T. A. Halgren, J. Comput. Chem. 1996, 17, 520.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. A. Halgren, J. Comput. Chem. 1996, 17, 553.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. A. Halgren, R. B. Nachbar, J. Comput. Chem. 1996, 17, 587.
(e) T. A. Halgren, J. Comput. Chem. 1996, 17, 616.
| Crossref | GoogleScholarGoogle Scholar |
(f) T. A. Halgren, J. Comput. Chem. 1999, 20, 720.
| Crossref | GoogleScholarGoogle Scholar |
(g) T. A. Halgren, J. Comput. Chem. 1999, 20, 730.
| Crossref | GoogleScholarGoogle Scholar |
[46] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision D.01 2016 (Gaussian, Inc.: Wallingford, CT).
[47] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B Condens. Matter 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
| Crossref | GoogleScholarGoogle Scholar |
[48] Y. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101.
| Crossref | GoogleScholarGoogle Scholar | 17129083PubMed |
[49] (a) Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
| Crossref | GoogleScholarGoogle Scholar |
[50] P. Comba, N. Dovalil, G. R. Hanson, G. Linti, Inorg. Chem. 2011, 50, 5165.
| Crossref | GoogleScholarGoogle Scholar | 21563768PubMed |
[51] L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837.
| Crossref | GoogleScholarGoogle Scholar |
[52] G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar |
[53] L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565.
| Crossref | GoogleScholarGoogle Scholar |