Elimination of Ethene from 1,2-Diiodoethane Induced by N-Heterocyclic Carbene Halogen Bonding*
Tiffany B. Poynder A B , Dharmeshkumar P. Savaliya A B , Andrew Molino A B , David J. D. Wilson A C and Jason L. Dutton A CA Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic. 3086, Australia.
B These authors contributed equally to this work.
C Corresponding authors. Email: david.wilson@latrobe.edu.au; j.dutton@latrobe.edu.au
Australian Journal of Chemistry 72(8) 614-619 https://doi.org/10.1071/CH19237
Submitted: 27 May 2019 Accepted: 27 June 2019 Published: 24 July 2019
Abstract
The attempted synthesis of N-heterocyclic carbene (NHC)-stabilised dicarbon (C2) fragments via nucleophilic substitution at 1,2-diiodoethane is reported. Rather than the expected SN2 pathway, clean elimination of ethene and formation of an iodoimidazolium cation was observed. The resistance towards nucleophilic substitution piqued interest, and subsequent investigation determined NHC-halogen bonding as the source. This is in contrast to reactions between NHCs and other alkyl halides, where substitution or elimination pathways are reported. A detailed theoretical study between these cases highlights the importance of iodine as a halogen bond donor compared with other halogens, and shows that NHCs are excellent halogen bond acceptors. This reactivity suggests potential for application of the halogen bonding interaction between NHCs and organic compounds.
References
[1] L. Jin, M. Melaimi, L. Liu, G. Bertrand, Org. Chem. Front. 2014, 1, 351.| Crossref | GoogleScholarGoogle Scholar |
[2] Y. Li, K. C. Mondal, P. P. Samuel, H. Zhu, C. M. Orben, S. Panneerselvam, B. Dittrich, B. Schwederski, W. Kaim, T. Mondal, D. Koley, H. W. Roesky, Angew. Chem. Int. Ed. 2014, 53, 4168.
| Crossref | GoogleScholarGoogle Scholar |
[3] D. Wu, Y. Li, R. Ganguly, R. Kinjo, Chem. Commun. 2014, 50, 12378.
| Crossref | GoogleScholarGoogle Scholar |
[4] D. C. Georgiou, B. D. Stringer, N. Holzmann, C. F. Hogan, P. J. Barnard, D. J. D. Wilson, G. Frenking, J. L. Dutton, Chem. – Eur. J. 2015, 21, 3377.
| Crossref | GoogleScholarGoogle Scholar | 25588368PubMed |
[5] J. L. Dutton, D. J. D. Wilson, Angew. Chem. Int. Ed. 2012, 51, 1477.
| Crossref | GoogleScholarGoogle Scholar |
[6] V. Nesterov, D. Reiter, P. Bag, P. Frisch, R. Holzner, A. Porzelt, S. Inoue, Chem. Rev. 2018, 118, 9678.
| Crossref | GoogleScholarGoogle Scholar | 29969239PubMed |
[7] M. M. D. Roy, E. Rivard, Acc. Chem. Res. 2017, 50, 2017.
| Crossref | GoogleScholarGoogle Scholar |
[8] D. C. Georgiou, L. Zhao, D. J. D. Wilson, G. Frenking, J. L. Dutton, Chem. – Eur. J. 2017, 23, 2926.
| Crossref | GoogleScholarGoogle Scholar | 27935139PubMed |
[9] D. Bhabagrahi, E. K. Dora, C. S. Panda, Indian J. Chem. Sect. B 1982, 21, 697.
[10] M. K. Denk, N. S. Milutinovic, K. M. Marczenko, N. M. Sadowski, A. Paschos, Chem. Sci. 2017, 8, 1883.
| Crossref | GoogleScholarGoogle Scholar | 28553478PubMed |
[11] M. K. Denk, N. Milutinovic, K. Marczenko, U. S. Patent, Ed. 2017.
[12] M. L. Cole, C. Jones, P. C. Junk, New J. Chem. 2002, 26, 1296.
| Crossref | GoogleScholarGoogle Scholar |
[13] N. Kuhn, J. Fahl, R. Fawzi, C. Maichle-Mossmer, M. Steimann, Z. Naturforsch. B 1998, 53, 720.
| Crossref | GoogleScholarGoogle Scholar |
[14] A. J. I. Arduengo, F. Davidson, H. V. R. Dias, J. R. Goerlich, D. Khasnis, W. J. Marshall, T. K. Prakasha, J. Am. Chem. Soc. 1997, 119, 12742.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. Chen, J. Lin, J. Xiao, Org. Lett. 2018, 20, 3061.
| Crossref | GoogleScholarGoogle Scholar | 29741387PubMed |
[16] D. Bulfield, S. M. Huber, Chem. – Eur. J. 2016, 22, 14434.
| Crossref | GoogleScholarGoogle Scholar | 27465662PubMed |
[17] B. Pinter, N. Nagels, W. A. Herrebout, F. De Proft, Chem. – Eur. J. 2013, 19, 519.
| Crossref | GoogleScholarGoogle Scholar | 23169478PubMed |
[18] H. Kubota, Y. Takahashi, J. Harada, T. Inabe, Cryst. Growth Des. 2014, 14, 5575.
| Crossref | GoogleScholarGoogle Scholar |
[19] C. Schmidt, B. Karge, R. Misgeld, A. Prokop, R. Franke, M. Bronstrup, I. Ott, Chem. – Eur. J. 2017, 23, 1869.
| Crossref | GoogleScholarGoogle Scholar | 27865002PubMed |
[20] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision A.03 2016 (Gaussian, Inc.: Wallingford, CT).
[21] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar |
[22] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
| Crossref | GoogleScholarGoogle Scholar | 16240044PubMed |
[23] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
| Crossref | GoogleScholarGoogle Scholar | 19366259PubMed |
[24] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
| Crossref | GoogleScholarGoogle Scholar | 21370243PubMed |
[25] S. Kozuch, J. M. L. Martin, J. Comput. Chem. 2013, 34, 2327.
| 23983204PubMed |