Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Effect of Structure Change on Luminescent Properties of CsPbBr2I Perovskite Nanocrystals after Heat Treatment

Ji Li A B , Li Wang B and Xin Gao A C
+ Author Affiliations
- Author Affiliations

A National Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China.

B Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, China.

C Corresponding author. Email: gaoxin@cust.edu.cn

Australian Journal of Chemistry 72(9) 663-668 https://doi.org/10.1071/CH19080
Submitted: 20 February 2019  Accepted: 9 May 2019   Published: 23 May 2019

Abstract

Lead halide perovskite nanocrystals (NCs) are still a popular subject in the field of luminescence because of their high photoluminescence quantum yield (PLQY) and colour tenability through anion exchange reactions or quantum confinement. We investigated the structure and luminescence properties of the mixed halide perovskites CsPbBr2I NCs with annealing temperatures. The results showed that the average grain size of CsPbBr2I increased with increasing the temperature from 300 to 440 K, and the morphology changed above 380 K. The normalised PL spectra of CsPbBr2I NCs had an obvious blue-shift, and then displayed a slight red-shift with increasing annealing temperature. In addition, the PL intensities, peak energies, and bandwidths of the NC films as a function of temperature were discussed in detail.


References

[1]  J. Li, L. H. Luo, H. W. Huang, C. Ma, Z. Z. Ye, J. Zeng, H. P. He, J. Phys. Chem. Lett. 2017, 8, 1161.
         | Crossref | GoogleScholarGoogle Scholar | 28229594PubMed |

[2]  J. S. Luo, J. Im, M. Mayer, M. Schreier, M. Nazeeruddin, N. Park, S. David Tilley, H. J. Fan, M. Grätzel, Science 2014, 345, 1593.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  J. Su, D. P. Chen, C. T. Lin, J. Cryst. Growth 2015, 422, 75.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  P. Ramasamy, D. Lim, B. Kim, S. Lee, M. Lee, J. Lee, Chem. Commun. 2016, 52, 2067.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  S. B. Sun, D. Yuan, Y. Xu, A. F. Wang, Z. T. Zeng, ACS Nano 2016, 10, 3648.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  W. Yang, J. Noh, N. Jeon, Y. Kim, S. Ryu, J. Seo, S. I. Seok, Science 2015, 348, 1234.
         | Crossref | GoogleScholarGoogle Scholar | 25999372PubMed |

[7]  M. Koolyk, D. Amgar, S. Aharon, L. Etgar, Nanoscale 2016, 8, 6403.
         | Crossref | GoogleScholarGoogle Scholar | 26841055PubMed |

[8]  Z. Y. Dang, J. Shamsi, F. Palazon, M. Imran, Q. Akkerman, S. Park, G. Bertoni, M. Prato, R. Brescia, L. Manna, ACS Nano 2017, 11, 2124.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. Gustafsson, M. Trinh, S. Jin, X.-Y. Zhu, Nat. Mater. 2015, 14, 636.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, T. Ding, N. S. Ginsberg, L. W. Wang, A. P. Alivisatos, P. Yang, Science 2015, 349, 1518.
         | Crossref | GoogleScholarGoogle Scholar | 26404831PubMed |

[11]  F. Zhang, H. Z. Zhong, C. Chen, X. G. Wu, X. M. Hu, H. L. Huang, J. B. Han, B. S. Zou, Y. P. Dong, ACS Nano 2015, 9, 4533.
         | Crossref | GoogleScholarGoogle Scholar | 25824283PubMed |

[12]  D. Nenon, J. Christians, L. Wheeler, J. Blackburn, E. Sanehira, B. J. Dou, M. Olsen, K. Zhu, J. Berry, J. Luther, Energy Environ. Sci. 2016, 9, 2072.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  K. Y. Yan, M. Z. Long, T. K. Zhang, Z. H. Wei, H. N. Chen, S. H. Yang, J. B. Xu, J. Am. Chem. Soc. 2015, 137, 4460.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  H. Cho, Su. Jeong, M. Park, Y. Kim, C. Wolf, C. Lee, J. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. Im, R. Friend, T. Lee, Science 2015, 350, 1222.
         | Crossref | GoogleScholarGoogle Scholar | 26785482PubMed |

[15]  P. Tyagi, S. Arveson, W. Tisdale, J. Phys. Chem. Lett. 2015, 6, 1911.
         | Crossref | GoogleScholarGoogle Scholar | 26263268PubMed |

[16]  S. Eaton, M. L. Lai, N. Gibson, A. Wong, L. T. Dou, J. Ma, L. W. Wang, S. Leone, P. D. Yang, Proc. Natl. Acad. Sci. USA 2016, 113, 1993.
         | Crossref | GoogleScholarGoogle Scholar | 26862172PubMed |

[17]  A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. Nazeeruddin, M. Grätzel, Adv. Funct. Mater. 2014, 24, 3250.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  S. Naghadeh, B. B. Luo, G. Abdelmageed, Y. C. Pu, C. Zhang, J. Z. Zhang, PhysChemComm 2018, 122, 15799.

[19]  P. Cottingham, R. Brutchey, Chem. Commun. 2016, 52, 5246.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  C. Stoumpos, C. Malliakas, M. Kanatzidis, Inorg. Chem. 2013, 52, 9019.
         | Crossref | GoogleScholarGoogle Scholar | 23834108PubMed |

[21]  X. M. Li, F. Cao, D. J. Yu, Z. G. Sun, Y. L. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu, H. B. Zeng, Small 2017, 13, 1603996.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. Chen, Y. T. Zou, L. Z. Wu, Q. Pan, D. Yang, H. C. Hu, Y. S. Tan, Q. X. Zhong, Y. Xu, H. Y. Liu, B. Q. Sun, Q. Zhang, Adv. Funct. Mater. 2017, 27, 1701121.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  Q. Zhang, Y. D. Yin, ASC Cent. Sci. 2018, 4, 668.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  M. Z. Zhang, Z. P. Zheng, Q. Y. Fu, Z. Chen, J. L. He, S. Zhang, L. Yan, Y. X. Hu, W. Luo, CrystEngComm 2017, 19, 6797.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  L. Protesescu, S. Yakunin, M. Bodnarchuk, F. Krieg, R. Caputo, C. Hendon, R. X. Yang, A. Walsh, M. Kovalenko, Nano Lett. 2015, 15, 3692.
         | Crossref | GoogleScholarGoogle Scholar | 25633588PubMed |

[26]  X. F. Du, G. Wu, J. Cheng, H. Dang, K. Z. Ma, Y. W. Zhang, D. F. Tan, S. Chen, RSC Adv. 2017, 7, 10391.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  M. Sebastian, J. Peters, C. Stoumpos, J. Im, S. Kostina, Z. Liu, M. Kanatzidis, A. Freeman, B. Wessels, Phys. Rev. B Condens. Matter Mater. Phys. 2015, 92, 235210.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  A. Swarnkar, R. Chulliyil, V. Ravi, M. Irfanullah, A. Chowdhury, A. Nag, Angew. Chem. Int. Ed. 2015, 54, 15424.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  X. Chen, L. C. Peng, K. K. Huang, Z. Shi, R. G. Xie, Nano Res. 2016, 9, 1994.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  G. Nedelcu, L. Protesescu, S. Yakunin, M. Bodnarchuk, M. Grotevent, M. Kovalenko, Nano Lett. 2015, 15, 5635.
         | Crossref | GoogleScholarGoogle Scholar | 26207728PubMed |

[31]  S. Kulkarni, T. Baikie, P. Boix, N. Yantara, N. Mathews, S. Mhaisalkar, J. Mater. Chem. A 2014, 2, 9221.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  J. Noh, S. Im, J. Heo, T. Mandal, S. Seok, Nano Lett. 2013, 13, 1764.
         | Crossref | GoogleScholarGoogle Scholar | 23517331PubMed |

[33]  X. Yuan, X. M. Hou, J. Li, C. Q. Qu, W. J. Zhang, J. L. Zhao, H. B. Li, Phys. Chem. Chem. Phys. 2017, 19, 8934.
         | Crossref | GoogleScholarGoogle Scholar | 28300235PubMed |

[34]  J. Nam, M. Jung, S. Chai, Y. Choi, D. Kim, J. Park, J. Phys. Chem. Lett. 2017, 8, 2936.
         | Crossref | GoogleScholarGoogle Scholar | 28605910PubMed |

[35]  U. Jong, C. Yu, Y. Jang, G. Ri, S. Hong, Y. Pae, J. Power Sources 2017, 350, 65.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  H. Zarick, N. Soetan, W. Erwin, R. Bardhan, J. Mater. Chem. A 2018, 6, 5507.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  D. M. Jang, K. Park, D. H. Kim, J. Park, F. Shojaei, H. S. Kang, J.-P. Ahn, J. W. Lee, J. K. Song, Nano Lett. 2015, 15, 5191.
         | Crossref | GoogleScholarGoogle Scholar | 26161637PubMed |

[38]  E. Hoke, D. Slotcavage, E. Dohner, A. Bowring, H. Karunadasa, M. McGehee, Chem. Sci. 2015, 6, 613.
         | Crossref | GoogleScholarGoogle Scholar | 28706629PubMed |

[39]  R. Beal, D. Slotcavage, T. Leijtens, A. Bowring, R. Belisle, W. Nguyen, G. Burkhard, E. Hoke, M. McGehee, J. Phys. Chem. Lett. 2016, 7, 746.
         | Crossref | GoogleScholarGoogle Scholar | 26863290PubMed |

[40]  Y. Song, S. Choi, J. Yoo, B. Kang, E. Ji, H. Jung, D. Yoon, Chem. Eng. J. 2017, 313, 461.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  S. Mariotti, O. Hutter, L. Phillips, P. Yates, B. Kundu, K. Durose, ACS Appl. Mater. Interfaces 2018, 10, 3750.
         | Crossref | GoogleScholarGoogle Scholar | 29345454PubMed |

[42]  Q. S. Zeng, X. Y. Zhang, X. L. Feng, S. Y. Lu, Z. L. Chen, X. Yong, S. Redfern, H. T. Wei, H. Y. Wang, H. Z. Shen, W. Zhang, W. T. Zheng, H. Zhang, J. Tse, B. Yang, Adv. Mater. 2018, 30, 1705393.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  J. C. Zhou, F. Huang, H. Lin, Z. B. Lin, X. Ju, Y. S. Wang, J. Mater. Chem. C 2016, 4, 7601.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  Z. Liu, Y. Bekenstein, X. C. Ye, S. Nguyen, J. Swabeck, D. D. Zhang, S. Lee, P. D. Yang, W. L. Ma, A. Alivisatos, J. Am. Chem. Soc. 2017, 139, 5309.
         | Crossref | GoogleScholarGoogle Scholar | 28358191PubMed |

[45]  T. Y. Zhang, M. Dar, G. Li, X. Feng, N. J. Guo, M. Grätzel, Y. X. Zhao, Sci. Adv. 2017, 3, e1700841.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  T. Gujar, T. Unger, A. Schönleber, M. Fried, F. Panzer, S. Smaalen, A. Köhler, M. Thelakkat, Phys. Chem. Chem. Phys. 2018, 20, 605.
         | Crossref | GoogleScholarGoogle Scholar |