Solubility of Cellulose in Binary Mixtures of 1-Alkyl-3-methylimidazolium Acetate and Dimethyl Sulfoxide: Influence of Alkyl Chain Length in the Cation
Yuta Tomimatsu A , Yukihiro Yoshimura B and Akio Shimizu A CA Graduate School of Environmental Engineering for Symbiosis, Soka University, 1-236 Tangi, Hachioji, Tokyo 192-8577, Japan.
B Department of Applied Chemistry, National Defence Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan.
C Corresponding author. Email: shimizu@soka.ac.jp
Australian Journal of Chemistry 72(9) 669-673 https://doi.org/10.1071/CH19047
Submitted: 30 January 2019 Accepted: 15 May 2019 Published: 4 June 2019
Abstract
The influence of alkyl chain length of cations on cellulose solubility in a neat imidazolium (MIM)-based ionic liquid (IL) [CnMIM][OAc] and [CnMIM][OAc]–DMSO binary system (n = 0–6) was investigated. The correlation between cellulose solubility and Kamlet–Taft hydrogen bond basicity (β) was also examined. Cellulose solubility (g per mol IL) in neat [CnMIM][OAc] increased as the cation alkyl chain length decreased from 6 to 2. However, alkyl chain lengths of 1 and 0 resulted in extremely poor cellulose solubility, indicating that a chain length of 2 was optimal for dissolution of cellulose in the system. Cellulose solubility in the [CnMIM][OAc]–DMSO binary system (n = 1–6) was greater than that in neat IL, with maximum solubility occurring at an IL mole fraction of ~0.2. Maximum cellulose solubility in the [CnMIM][OAc]–DMSO binary system was slightly better at even alkyl chain lengths (n = 2, 4, or 6) than at odd chain lengths (n = 1, 3, or 5), with the best solubility at n = 4. More interestingly, maximum cellulose solubility and specific IL mole fraction in the IL-DMSO binary system were related with the β values of neat ILs, even with ILs containing different anionic species or cation alkyl chain lengths. This indicates that solubility information in IL-DMSO binary systems is influenced by the characteristics of neat ILs.
References
[1] A. Brandt, J. Gräsvik, J. P. Hallett, T. Welton, Green Chem. 2013, 15, 550.| Crossref | GoogleScholarGoogle Scholar |
[2] S. H. Kim, C. M. Lee, K. Kafle, Korean J. Chem. Eng. 2013, 30, 2127.
| Crossref | GoogleScholarGoogle Scholar |
[3] C.-H. Kuo, C.-K. Lee, Carbohydr. Polym. 2009, 77, 41.
| Crossref | GoogleScholarGoogle Scholar |
[4] T. Endo, E. M. Aung, S. Fujii, S. Hosomi, M. Kimizu, K. Ninomiya, K. Takahashi, Carbohydr. Polym. 2017, 176, 365.
| Crossref | GoogleScholarGoogle Scholar | 28927619PubMed |
[5] M. Isik, H. Sardon, D. Mecerreyes, Int. J. Mol. Sci. 2014, 15, 11922.
| Crossref | GoogleScholarGoogle Scholar | 25000264PubMed |
[6] S. K. Ramamoorthy, M. Skrifvars, A. Persson, Polym. Rev. 2015, 55, 107.
| Crossref | GoogleScholarGoogle Scholar |
[7] W. Yang, E. Fortunati, F. Dominici, G. Giovanale, A. Mazzaglia, G. M. Balestra, J. M. Kenny, D. Puglia, Eur. Polym. J. 2016, 79, 1.
| Crossref | GoogleScholarGoogle Scholar |
[8] J. Zhang, J. Wu, J. Yu, X. Zhang, J. Hea, J. Zhang, Mater. Chem. Front. 2017, 1, 1273.
| Crossref | GoogleScholarGoogle Scholar |
[9] M. E. Himmel, S.-Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, T. D. Foust, Science 2007, 315, 804.
| Crossref | GoogleScholarGoogle Scholar | 17289988PubMed |
[10] R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, J. Am. Chem. Soc. 2002, 124, 4974.
| Crossref | GoogleScholarGoogle Scholar | 11982358PubMed |
[11] M. J. Earle, J. M. S. S. Esperança, M. A. Gilea, J. N. C. Lopes, L. P. N. Rebelo, J. W. Magee, K. R. Seddon, J. A. Widegren, Nature 2006, 439, 831.
| Crossref | GoogleScholarGoogle Scholar | 16482154PubMed |
[12] T. Welton, Chem. Rev. 1999, 99, 2071.
| Crossref | GoogleScholarGoogle Scholar | 11849019PubMed |
[13] K. R. Seddon, J. Chem. Technol. Biotechnol. 1997, 68, 351.
| Crossref | GoogleScholarGoogle Scholar |
[14] A. R. Xu, J. J. Wang, H. Y. Wang, Green Chem. 2010, 12, 268.
| Crossref | GoogleScholarGoogle Scholar |
[15] H. Wang, G. Gurau, R. D. Rogers, Chem. Soc. Rev. 2012, 41, 1519.
| Crossref | GoogleScholarGoogle Scholar | 22266483PubMed |
[16] B. Lu, A. Xu, J. Wang, Green Chem. 2014, 16, 1326.
| Crossref | GoogleScholarGoogle Scholar |
[17] M. T. Clough, Green Chem. 2017, 19, 4754.
| Crossref | GoogleScholarGoogle Scholar |
[18] Y. Li, X. Liu, Y. Zhang, K. Jiang, J. Wang, S. Zhang, ACS Sustain. Chem. & Eng. 2017, 5, 3417.
| Crossref | GoogleScholarGoogle Scholar |
[19] J. Zhang, H. Zhang, J. Wu, J. Zhang, J. Hea, J. Xiang, Phys. Chem. Chem. Phys. 2010, 12, 1941.
| Crossref | GoogleScholarGoogle Scholar | 20145862PubMed |
[20] Y. Li, J. Wang, X. Liu, S. Zhang, Chem. Sci. 2018, 9, 4027.
| Crossref | GoogleScholarGoogle Scholar | 29780532PubMed |
[21] T. Erdmenger, C. Haensch, R. Hoogenboom, U. S. Schubert, Macromol. Biosci. 2007, 7, 440.
| Crossref | GoogleScholarGoogle Scholar | 17429805PubMed |
[22] J. Zhang, L. Xu, J. Yu, J. Wu, X. Zhang, J. He, J. Zhang, Sci. China Chem. 2016, 59, 1421.
| Crossref | GoogleScholarGoogle Scholar |
[23] C. Olsson, A. Idström, L. Nordstierna, G. Westman, Carbohydr. Polym. 2014, 99, 438.
| Crossref | GoogleScholarGoogle Scholar | 24274528PubMed |
[24] R. Rinaldi, Chem. Commun. 2011, 511.
| Crossref | GoogleScholarGoogle Scholar |
[25] A. Xu, Y. Zhang, Y. Zhao, J. Wang, Carbohydr. Polym. 2013, 92, 540.
| Crossref | GoogleScholarGoogle Scholar | 23218333PubMed |
[26] A. Xu, L. Cao, B. Wang, J. Ma, Adv. Mater. Sci. Eng. 2015, 2015, 1.
| Crossref | GoogleScholarGoogle Scholar |
[27] C. Reichardt, Chem. Rev. 1994, 94, 2319.
| Crossref | GoogleScholarGoogle Scholar |
[28] L. K. J. Hauru, M. Hummel, A. W. T. King, I. Kilpeläinen, H. Sixta, Biomacromolecules 2012, 13, 2896.
| Crossref | GoogleScholarGoogle Scholar |
[29] J. Yan, L. Liang, T. R. Pray, N. Sun, in Biomass Preprocessing and Pretreatments for Production of Biofuels: Mechanical, Chemical and Thermal Methods (Ed. J. S. Tumuluru) 2018, Ch. 15, pp. 413–436 (CRC Press: Boca Raton, FL).
[30] Y. Tomimatsu, H. Suetsugu, Y. Yoshimura, A. Shimizu, J. Mol. Liq. 2019, 279, 120.
| Crossref | GoogleScholarGoogle Scholar |
[31] A. Isogai, R. H. Atalla, Cellulose 1998, 5, 309.
| Crossref | GoogleScholarGoogle Scholar |
[32] H. Qi, C. Chang, L. Zhang, Cellulose 2008, 15, 779.
| Crossref | GoogleScholarGoogle Scholar |
[33] H. Zhao, G. A. Baker, Z. Song, O. Olubajo, T. Crittle, D. Peters, Green Chem. 2008, 10, 696.
| Crossref | GoogleScholarGoogle Scholar |
[34] D. Kasprzak, E. Krystkowiak, I. Stępniak, M. Galiński, Eur. Polym. J. 2019, 113, 89.
| Crossref | GoogleScholarGoogle Scholar |
[35] T. Raj, M. Kapoor, S. Semwal, S. Sadula, V. Pandey, R. P. Gupta, R. Kumar, D. K. Tuli, B. P. Das, J. Clean. Prod. 2016, 113, 1005.
| Crossref | GoogleScholarGoogle Scholar |
[36] K. Kuroda, H. Kunimura, Y. Fukaya, H. Ohno, Cellulose 2014, 21, 2199.
| Crossref | GoogleScholarGoogle Scholar |
[37] Y. Fukaya, K. Hayashi, M. Wada, H. Ohno, Green Chem. 2008, 10, 44.
| Crossref | GoogleScholarGoogle Scholar |
[38] J. M. Andanson, E. Bordes, J. Devémy, F. Leroux, A. A. H. Páduaa, M. F. Costa Gomes, Green Chem. 2014, 16, 2528.
| Crossref | GoogleScholarGoogle Scholar |
[39] Z. Wang, L. Zheng, C. Li, D. Zhang, Y. Xiao, G. Guan, W. Zhu, Carbohydr. Polym. 2013, 94, 505.
| Crossref | GoogleScholarGoogle Scholar | 23544568PubMed |
[40] M. T. Clough, K. Geyer, P. A. Hunt, J. Mertes, T. Welton, Phys. Chem. Chem. Phys. 2013, 15, 20480.
| Crossref | GoogleScholarGoogle Scholar | 24173605PubMed |