Versatile Synthesis of Functionalized Tetrahydroisoquinolines by Ring Transformation of 2H-Pyran-2-ones
Priyanka B. Kole A and Fateh V. Singh A BA Chemistry Division, School of Advanced Sciences, VIT Institute, Chennai Campus, Chennai-600127, Tamil Nadu, India.
B Corresponding author. Email: fatehveer.singh@vit.ac.in
Australian Journal of Chemistry 72(7) 524-532 https://doi.org/10.1071/CH19046
Submitted: 29 January 2019 Accepted: 4 April 2019 Published: 8 May 2019
Abstract
Functionalized tetrahydroisoquinolines are convenient precursors for the construction of numerous heterocyclic compounds of therapeutic importance. In this paper we have illustrated an efficient synthesis of highly substituted tetrahydroisoquinolines from 2H-pyran-2-ones via nucleophile-mediated ring transformation with tert-butyl-4-oxopiperidine-1-carboxylate followed by acid-mediated cleavage of the tert-butyloxycarbonyl group. The products were achieved smoothly in high yields with flexibility of various substituents.
References
[1] (a) F. Musshoff, T. Daldrup, W. Bonte, A. Leitner, O. M. Lesch, J. Chromatogr. B Biomed. Appl. 1996, 683, 163.| Crossref | GoogleScholarGoogle Scholar | 8891913PubMed |
(b) M. R. Porter, R. M. Shaker, C. Calcanas, J. J. Topczewski, J. Am. Chem. Soc. 2018, 140, 1211. and the references cited therein.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) J.-C. Castillo, E. Jimenez, J. Portilla, B. Insuasty, J. Quiroga, R. Moreno-Fuquen, A. R. Kennedy, R. Abonia, Tetrahedron 2018, 74, 932.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Zablotskaya, I. Segal, G. Kazachonokh, Y. Popelis, I. Shestakova, V. Nikolajeva, Silicon 2018, 10, 1129.
| Crossref | GoogleScholarGoogle Scholar |
[3] Y. S. Ko, E. J. Park, Y. M. Kim, H. J. Kim, H. Yun-Choi, D. H. Lee, K. C. Chang, Int. Immunopharmacol. 2017, 52, 297. and the references cited therein.
| Crossref | GoogleScholarGoogle Scholar | 28982049PubMed |
[4] (a) E. Kato, S. Kimura, J. Kawabata, Bioorg. Med. Chem. 2017, 25, 6412.
| Crossref | GoogleScholarGoogle Scholar | 29066136PubMed |
(b) P. Erasto, J. Omolo, R. Sunguruma, J. J. Munissi, V. Wiketye, C. de Konig, A. F. Ahmed, Nat. Prod. Bioprospect. 2018, 8, 63.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) J.-H. Park, I.-C. Hwang, N. Ha, S. Lee, J. M. Kim, S. S. Lee, H. Yu, I.-T. Lim, J. A. You, D.-H. Kim, Arch. Pharm. Res. 2011, 34, 485.
| Crossref | GoogleScholarGoogle Scholar | 21547682PubMed |
(b) N. Zhang, Z. Lian, X. Peng, Z. Li, H. Zhu, J. Ethnopharmacol. 2017, 196, 242.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. A. Cohen, J. C. Travis, P. H. J. Keizers, F. E. Boyer, B. J. Venhuis, Clin. Toxicol. 2019, 57, 125.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) X. Sun, M. Liu, L. Gao, Y. Mao, D. Zhao, J. Zhuang, L. Liu, Eur. J. Med. Chem. 2018, 150, 719.
| Crossref | GoogleScholarGoogle Scholar | 29573707PubMed |
(b) S. Pradhan, T. Mahaddalkar, S. Choudhary, N. Manchukonda, P. R. Nagireddy, S. Kantevari, M. Lopus, Curr. Top. Med. Chem. 2017, 17, 2569.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) L. Li, Y. Jiao, T. Jin, H. Sun, S. Li, C. Jin, S. Hu, J. Ji, L. Xiang, Life Sci. 2017, 191, 211.
| Crossref | GoogleScholarGoogle Scholar | 29054451PubMed |
(b) W. Lin, S. Ma, Org. Chem. Front. 2017, 4, 958.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) M. Mihoubi, N. Micale, A. Scala, R. M. Jarraya, A. Bouaziz, T. Schirmeister, F. Risitano, A. Piperno, G. Grassi, Molecules 2015, 20, 14902.
| Crossref | GoogleScholarGoogle Scholar | 26287146PubMed |
(b) M. Kurnik-Lucka, P. Panula, A. Bugajski, K. Gil, Neurotox. Res. 2018, 33, 485.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Kovacs, R. Megyesi, E. Forro, F. Fulop, Tetrahedron Asymmetry 2017, 28, 1829.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. Chen, X. Zheng, S. Ali, M. Guo, R. Zhong, Z. Chen, Y. Zhang, H. Qing, Y. Deng, ACS Chem. Neurosci. 2018, 9, 1388.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) O. Parravicini, M. L. Bogado, S. Rojas, E. L. Angelina, S. A. Andujar, L. J. Gutierrez, N. Cabedo, M. J. Sanz, M. P. Lopez-Gresa, D. Cortes, R. D. Euriz, J. Mol. Model. 2017, 23, 273.
| Crossref | GoogleScholarGoogle Scholar | 28866777PubMed |
(b) C. J. Draper-Joyce, M. Michino, R. K. Verma, C. K. Herenbrink, J. Shonberg, A. Kopinathan, P. J. Scammells, B. Capuano, D. M. Thal, J. A. Javitch, A. Christopoulos, L. Shi, J. R. Lane, Biochem. Pharmacol. 2018, 148, 315.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Wasik, I. Romanska, A. Zelek-Molik, L. Antkiewiez-Michaluk, Neurotox. Res. 2018, 33, 523.
| Crossref | GoogleScholarGoogle Scholar |
[10] G. J. Meuzelaar, L. Maat, R. A. Sheldon, Tetrahedron 1999, 55, 4481.
| Crossref | GoogleScholarGoogle Scholar |
[11] A. R. Katritzky, J. Cobo-Domingo, B. Yang, P. J. Steel, Tetrahedron Asymmetry 1999, 10, 255.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) E. L. Fritzen, A. S. Brightwell, L. A. Erickson, D. L. Romero, Bioorg. Med. Chem. Lett. 2000, 10, 649.
| Crossref | GoogleScholarGoogle Scholar | 10762045PubMed |
(b) S. Hanessian, E. Demont, W. A. L. van Otterlo, Tetrahedron Lett. 2000, 41, 4999.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Brozda, L. Koroniak, M. D. Rozwadowska, Tetrahedron Asymmetry 2000, 11, 3017.
| Crossref | GoogleScholarGoogle Scholar |
[13] L. N. Pridgen, J. Heterocycl. Chem. 1980, 17, 1289.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) L. Shi, Z.-S. Ye, L.-L. Cao, R.-N. Guo, Y. Hu, Y.-G. Zhou, Angew. Chem. Int. Ed. 2012, 51, 8286.
| Crossref | GoogleScholarGoogle Scholar |
(b) D. Zhao, F. Glorius, Angew. Chem. Int. Ed. 2013, 52, 2. and the references are cited therein.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) J. Wen, R. Tan, S. Liu, Q. Zhao, X. Zhang, Chem. Sci. 2016, 7, 3047.
| Crossref | GoogleScholarGoogle Scholar | 29997795PubMed |
(b) M.-W. Chen, Y. Ji, J. Wang, Q.-A. Chen, L. Shi, Y.-G. Zhou, Org. Lett. 2017, 19, 4988.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) L. F. Tietz, K. Thede, R. Schimpf, F. Sannicolo, Chem. Commun. 2000, 583.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Mancinelli, C. Alamillo, J. Albert, X. Ariza, H. Etxabe, J. Farras, J. Garcia, J. Granell, F. J. Quijada, Organometallics 2017, 36, 911.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) S. G. Lee, S. Sin, S. Kim, S.-G. Kim, Tetrahedron Lett. 2018, 59, 1480.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. G. Lee, S.-G. Kim, Tetrahedron 2018, 74, 3671.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) C. Locher, N. Peerzada, ARKIVOC 2000, 14.
(b) V. Snieckus, E. David, Synfacts 2011, 4, 0363.
| Crossref | GoogleScholarGoogle Scholar |
[19] A. Padwa, L. S. Beall, T. M. Heidelbaugh, B. Liu, S. M. Sheehan, J. Org. Chem. 2000, 65, 2684.
| Crossref | GoogleScholarGoogle Scholar | 10808441PubMed |
[20] J. Zhao, B. R. Lichman, J. M. Ward, H. C. Hailes, Chem. Commun. 2018, 54, 1323.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. G. Mikhailovskii, D. V. Korchagin, A. S. Yusov, O. V. Gashkova, Chem. Heterocycl. Compd. 2017, 53, 1114.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) A. Goel, V. J. Ram, Tetrahedron 2009, 65, 7865.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. S. Lee, Mar. Drugs 2015, 13, 1581.
| Crossref | GoogleScholarGoogle Scholar |
[23] (a) F. V. Singh, V. Kumar, A. Goel, Synlett 2007, 13, 2086.
| Crossref | GoogleScholarGoogle Scholar |
(b) F. V. Singh, V. Kumar, B. Kumar, A. Goel, Tetrahedron 2007, 63, 10971.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Goel, F. V. Singh, V. Kumar, M. Reichert, T. A. M. Gulder, G. Bringmann, J. Org. Chem. 2007, 72, 7765.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Kumar, F. V. Singh, A. Goal, Tetrahedron Lett. 2007, 48, 8223.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Goel, V. Kumar, Y. Hemberger, F. V. Singh, P. Nag, M. Knauer, R. Kant, R. Raghunandan, P. R. Maulik, G. Bringmann, J. Org. Chem. 2016, 81, 10721.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) A. Goel, F. V. Singh, A. Sharon, P. R. Maulik, Synlett 2005, 4, 623.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Goel, F. V. Singh, D. Verma, Synlett 2005, 13, 2027.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Goel, G. Taneja, A. Raghuvanshi, R. Kant, P. R. Maulik, Org. Biomol. Chem. 2013, 11, 5239.
| Crossref | GoogleScholarGoogle Scholar |
[25] (a) V. J. Ram, N. Agarwal, A. S. Saxena, A. Farhanullah, P. R. Sharon, Maulik, J. Chem. Soc., Perkin Trans. 1 2002, 1426.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Goel, S. P. Singh, A. Kumar, R. Kant, P. R. Maulik, Org. Lett. 2009, 11, 5122.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Goel, V. Kumar, S. Chaurasia, M. Rawat, R. Prasad, R. S. Anand, J. Org. Chem. 2010, 75, 3656.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. K. Maurya, V. K. Tandon, B. Kumar, A. Kumar, V. Huch, V. J. Ram, Org. Biomol. Chem. 2012, 10, 605.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Goel, V. Kumar, S. P. Singh, A. Sharma, S. Prakash, C. Singh, R. S. Anand, J. Mater. Chem. 2012, 22, 14880.
| Crossref | GoogleScholarGoogle Scholar |
(f) A. Goel, A. Sharma, M. Kathuria, A. Bhattacharjee, A. Verma, P. R. Mishra, A. Nazir, K. Mitra, Org. Lett. 2014, 16, 756.
| Crossref | GoogleScholarGoogle Scholar |
(g) A. Goel, S. Umar, P. Nag, A. Sharma, L. Kumar, Z. Shamsuzzama, J. R. Hossain, A. Gayen, Nazir, Chem. Commun. 2015, 51, 5001.
| Crossref | GoogleScholarGoogle Scholar |
(h) A. Sharma, S. Umar, P. Kar, K. Singh, M. Sachdev, A. Goel, Analyst 2016, 141, 137.
| Crossref | GoogleScholarGoogle Scholar |
(i) G. Taneja, C. P. Gupta, S. Mishra, R. Srivastava, N. Rahuja, A. K. Rawat, J. Pandey, A. P. Gupta, N. Jaiswal, G. R. Jiaur, A. K. Tamrakar, A. K. Srivastava, A. Goel, MedChemComm 2017, 8, 329.
| Crossref | GoogleScholarGoogle Scholar |
[26] V. J. Ram, P. Srivastava, A. Goel, Synthesis 2000, 813.
| Crossref | GoogleScholarGoogle Scholar |
[27] S. E. Shetgaonkar, F. V. Singh, Synthesis 2018, 50, 3540.
| Crossref | GoogleScholarGoogle Scholar |
[28] F. V. Singh, P. B. Kole, Synthesis 2019, 51, 1435.
| Crossref | GoogleScholarGoogle Scholar |
[29] (a) Y. Tominaga, A. Ushirogochi, Y. J. Matsuda, Heterocycl. Chem. 1987, 24, 1557.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Goel, F. V. Singh, M. Dixit, D. Verma, R. Raghunandan, P. R. Maulik, Chem. Asian J. 2007, 2, 239.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. V. Singh, S. Chaurasia, M. D. Joshi, A. K. Srivastava, A. Goel, Bioorg. Med. Chem. Lett. 2007, 17, 2425.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Goel, V. J. Ram, Tetrahedron 2009, 65, 7865. and the references cited therein.
| Crossref | GoogleScholarGoogle Scholar |
[30] (a) A. Goel, F. V. Singh, Tetrahedron Lett. 2005, 46, 5585.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Goel, D. Verma, F. V. Singh, Tetrahedron Lett. 2005, 46, 8487.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. V. Singh, A. Kumar, A. Goel, Tetrahedron Lett. 2006, 47, 7767.
| Crossref | GoogleScholarGoogle Scholar |
(d) V. Kumar, F. V. Singh, A. Parihar, A. Goel, Tetrahedron Lett. 2009, 50, 680.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Goel, V. Kumar, P. Nag, V. Bajpai, B. Kumar, C. Singh, S. Prakash, R. S. Anand, J. Org. Chem. 2011, 76, 7474.
| Crossref | GoogleScholarGoogle Scholar |
[31] L.-F. Zeng, X.-H. Jiang, T. Sanchez, H.-S. Zhang, R. Dayam, N. Neamati, Y.-Q. Long, Bioorg. Med. Chem. 2008, 16, 7777.
| Crossref | GoogleScholarGoogle Scholar | 18644730PubMed |