Trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium Iodide@Hemimethylcucurbit[6]uril Fluorescent Probe for Anion Recognition
Sai Huang A , Mei Yang A , Xin-Yu Deng A , Qian Jiang Zhu A , Ying Huang A , Zhu Tao A C and Kai Chen B CA Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.
B Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
C Corresponding authors. Email: gzutao@263.net; catqchen@163.com
Australian Journal of Chemistry 72(7) 533-541 https://doi.org/10.1071/CH19119
Submitted: 12 March 2019 Accepted: 3 April 2019 Published: 7 May 2019
Abstract
In the present work, a host–guest system of a hemimethyl-substituted cucurbit[6]uril derived from 3α-methyl-glycoluril (HMeQ[6]) and a hemicyanine dye, trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide (t-DSMI) showing strong fluorescence emission has been evaluated as a fluorescent probe. The results of a preliminary systematic study on the detection of a series of inorganic anions have revealed that this Q[n]-based host–guest fluorescent probe shows clear responses to BF4− and H2PO4− anions through distinct fluorescence quenching. Application of this Q[n]-based host–guest interaction system in anion recognition or detection opens a new avenue in Q[n] chemistry.
References
[1] C. Caltagirone, P. A. Gale, Chem. Soc. Rev. 2009, 38, 520.| Crossref | GoogleScholarGoogle Scholar | 19169465PubMed |
[2] P. A. Gale, T. Gunnlaugsson, Chem. Soc. Rev. 2010, 39, 3595.
| Crossref | GoogleScholarGoogle Scholar |
[3] P. A. Gale, C. Caltagirone, Chem. Soc. Rev. 2015, 44, 4212.
| Crossref | GoogleScholarGoogle Scholar | 24975326PubMed |
[4] G. Yu, K. Jie, F. Huang, Chem. Rev. 2015, 115, 7240.
| Crossref | GoogleScholarGoogle Scholar | 25716119PubMed |
[5] P. Molina, F. Zapata, A. Caballero, Chem. Rev. 2017, 117, 9907.
| Crossref | GoogleScholarGoogle Scholar | 28665114PubMed |
[6] A. Gomes, E. Fernandes, L. Jose, F. C. Lima, J. Fluoresc. 2006, 16, 115.
[7] N. C. Brady, R. R. Weil, The Nature and Properties of Soils 2002 (Prentice Hall: Upper Saddle River, NJ).
[8] D. L. Long, E. Burkholder, L. Cronin, Chem. Soc. Rev. 2007, 36, 105.
| Crossref | GoogleScholarGoogle Scholar | 17173149PubMed |
[9] A. Müller, F. Peters, M. T. Pope, D. Gatteschi, Chem. Rev. 1998, 98, 239.
| Crossref | GoogleScholarGoogle Scholar | 11851505PubMed |
[10] X. Chen, F. Wang, J. Y. Hyun, T. Wei, J. Qiang, X. Ren, I. Shin, J. Yoon, Chem. Soc. Rev. 2016, 45, 2976.
| Crossref | GoogleScholarGoogle Scholar | 27092436PubMed |
[11] Z. Yang, J. Cao, Y. He, J. H. Yang, T. Kim, X. Peng, J. S. Kim, Chem. Soc. Rev. 2014, 43, 4563.
| Crossref | GoogleScholarGoogle Scholar | 24723011PubMed |
[12] L. E. Santos-Figueroa, M. E. Moragues, E. Climent, A. Agostini, R. Martinez-Manez, F. Sancenon, Chem. Soc. Rev. 2013, 42, 3489.
| Crossref | GoogleScholarGoogle Scholar | 23400370PubMed |
[13] M. Moragues, R. Martinez-Manez, F. Sancenon, Chem. Soc. Rev. 2011, 40, 2593.
| Crossref | GoogleScholarGoogle Scholar | 21279197PubMed |
[14] P. A. Gale, N. Busschaert, C. J. E. Haynes, L. E. Karagiannidis, I. L. Kirby, Chem. Soc. Rev. 2014, 43, 205.
| Crossref | GoogleScholarGoogle Scholar | 24108306PubMed |
[15] J. Li, D. Yim, W. D. Jang, J. Yoon, Chem. Soc. Rev. 2017, 46, 2437.
| Crossref | GoogleScholarGoogle Scholar | 27711665PubMed |
[16] Y. C. Chen, X. X. Liu, H. Huang, W. W. Wu, Y. S. Zheng, Sci. China Chem. 2010, 53, 569.
| Crossref | GoogleScholarGoogle Scholar |
[17] S. Mark, Nat. Chem 2014, 6, 1029.
[18] H. Cong, X. L. Ni, X. Xiao, Y. Huang, Q. J. Zhu, S. F. Xue, Z. Tao, L. F. Lindoy, G. Wei, Org. Biomol. Chem. 2016, 14, 4335.
| Crossref | GoogleScholarGoogle Scholar | 26991738PubMed |
[19] J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, Angew. Chem. Int. Ed. 2005, 44, 4844.
| Crossref | GoogleScholarGoogle Scholar |
[20] K. Kim, N. Selvapalam, Y. H. Ko, K. M. Park, D. Kim, J. Kim, Chem. Soc. Rev. 2007, 36, 267.
| Crossref | GoogleScholarGoogle Scholar | 17264929PubMed |
[21] R. N. Dsouza, U. Pischel, W. M. Nau, Chem. Rev. 2011, 111, 7941.
| 21981343PubMed |
[22] E. Masson, X. X. Ling, R. Joseph, L. Kyeremeh-Mensah, X. Y. Lu, RSC Adv. 2012, 2, 1213.
| Crossref | GoogleScholarGoogle Scholar |
[23] A. E. Kaifer, Acc. Chem. Res. 2014, 47, 2160.
| Crossref | GoogleScholarGoogle Scholar | 24884003PubMed |
[24] L. Isaacs, Acc. Chem. Res. 2014, 47, 2052.
| Crossref | GoogleScholarGoogle Scholar | 24785941PubMed |
[25] K. I. Assaf, W. M. Nau, Chem. Soc. Rev. 2015, 44, 394.
| Crossref | GoogleScholarGoogle Scholar | 25317670PubMed |
[26] X. S. Hou, C. F. Ke, J. F. Stoddart, Chem. Soc. Rev. 2016, 45, 3766.
| Crossref | GoogleScholarGoogle Scholar |
[27] J. Liu, Y. Lan, Z. Yu, C. S. Y. Tan, R. M. Parker, C. Abell, O. A. Scherman, Acc. Chem. Res. 2017, 50, 208.
| Crossref | GoogleScholarGoogle Scholar | 28075551PubMed |
[28] J. Murray, K. Kim, T. Ogoshi, W. Yao, B. C. Gibb, Chem. Soc. Rev. 2017, 46, 2479.
| Crossref | GoogleScholarGoogle Scholar | 28338130PubMed |
[29] W. Liu, S. K. Samanta, B. D. Smith, L. Isaacs, Chem. Soc. Rev. 2017, 46, 2391.
| Crossref | GoogleScholarGoogle Scholar | 28191579PubMed |
[30] A. Koc, D. Tuncel, Isr. J. Chem. 2018, 58, 334.
| Crossref | GoogleScholarGoogle Scholar |
[31] J. Murray, K. Kim, T. Ogoshi, W. Yao, B. C. Gibb, Chem. Soc. Rev. 2017, 46, 2479.
| Crossref | GoogleScholarGoogle Scholar | 28338130PubMed |
[32] A. A. Elbashir, H. Y. Aboul-Enein, Crit. Rev. Anal. Chem. 2015, 45, 52.
| Crossref | GoogleScholarGoogle Scholar |
[33] S. Mhejabeen, P. Haridas, J. Mater. Chem. C 2016, 14, 2685.
[34] J. H. Zhu, C. Y. Li, S. P. Liu, Z. F. Liu, Y. F. Li, X. L. Hu, Sens. Actuators B 2014, 198, 255.
| Crossref | GoogleScholarGoogle Scholar |
[35] M. Monika, B. Laszlo, J. István, J. Phys. Chem. C 2008, 112, 3410.
[36] H. L. Ji, F. Y. Liu, S. G. Sun, Sci. World J. 2013, 2013, 1.
[37] Z. Y. Li, S. G. Sun, F. Y. Liu, Y. Pang, J. L. Fan, F. L. Song, X. J. Peng, Dyes Pigments 2012, 93, 1401.
| Crossref | GoogleScholarGoogle Scholar |
[38] J. X. Lin, Y. Q. Zhang, J. X. Zhang, S. F. Xue, Q. J. Zhu, Z. Tao, J. Mol. Struct. 2008, 875, 442.
| Crossref | GoogleScholarGoogle Scholar |
[39] X. L. Ni, X. Xiao, H. Cong, L. L. Liang, K. Chen, X. J. Cheng, N. N. Ji, Q. J. Zhu, S. F. Xue, Z. Tao, Chem. Soc. Rev. 2013, 42, 9480.
| Crossref | GoogleScholarGoogle Scholar | 24048328PubMed |
[40] X. L. Ni, S. F. Xue, Z. Tao, Q. J. Zhu, L. F. Lindoy, G. Wei, Coord. Chem. Rev. 2015, 287, 89.
| Crossref | GoogleScholarGoogle Scholar |
[41] X. L. Ni, X. Xiao, H. Cong, Q. J. Zhu, S. F. Xue, Z. Tao, Acc. Chem. Res. 2014, 47, 1386.
| Crossref | GoogleScholarGoogle Scholar | 24673124PubMed |