Green Synthesized Plasmonic Silver Systems for Potential Non-Linear Optical Applications: Optical Limiting and Dual Beam Mode Matched Thermal Lensing
Jeena Thomas A , Prakash Perikaruppan A F , Vinoy Thomas B , Jancy John B , Raji Mary Mathew B , Joice Thomas C , Ibrahimkutty Rejeena D , Sebastian Mathew E and Abdulhassan Mujeeb EA Department of Chemistry, Thiagarajar College, Madurai 625009, India.
B Centre for Functional Materials, Christian College, Chengannur University of Kerala, Kerala 689122, India.
C Department of Chemistry, The Bridge@USC and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089-1661, USA.
D Nano Photonics Division, MSM College, Kayamkulam 690502, India.
E International School of Photonics, Cochin University of Science and Technology, Cochin 22, India.
F Corresponding author. Email: kmpprakash@gmail.com
Australian Journal of Chemistry 72(6) 460-466 https://doi.org/10.1071/CH18617
Submitted: 15 December 2018 Accepted: 25 February 2019 Published: 28 March 2019
Abstract
Bioactive compound functionalized plasmonic systems are evolving as a promising branch of nanotechnology. In this communication the synthesis of bioactive compound mimosine-based silver nanoparticles (AgNPs) and their non-linear optical and thermo-optic properties are presented. UV-Visible spectroscopy, optical bandgap measurement, fluorescence spectroscopy, and high-resolution transmission electron microscopy (HRTEM) techniques were used to characterize the synthesized AgNPs. An open aperture z-scan technique was used to determine the non-linear optical parameters. A very strong reverse saturable absorption (RSA) and low optical limiting threshold were observed for the present mimosine decorated AgNP system. The thermo-optic property of the present system was evaluated using a highly sensitive dual beam mode matched thermal lensing spectroscopic technique. A comparison of the low limiting threshold (242 MW cm−2) and thermo-optic property (thermal diffusivity, D = 1.13 × 10−7 m2 s−1) with similar systems proves its capability for non-linear optical and thermo-optic applications.
References
[1] J. Li, J. Liu, X. Tian, Z. Y. Li, Part. Part. Syst. Charact. 2017, 34, 1600380.| Crossref | GoogleScholarGoogle Scholar |
[2] X. Fan, W. Zheng, D. J. Singh, Light Sci. Appl. 2014, 3, e179.
| Crossref | GoogleScholarGoogle Scholar |
[3] N. G. Khlebtsov, L. A. Dykman, J. Quant. Spectrosc. Radiat. Transfer 2010, 111, 1.
| Crossref | GoogleScholarGoogle Scholar |
[4] A. S. Urban, S. Carretero-Palacios, A. A. Lutich, T. Lohmüller, J. Feldmann, F. Jäckel, Nanoscale 2014, 6, 4458.
| Crossref | GoogleScholarGoogle Scholar | 24664273PubMed |
[5] E. Y. Kim, D. Kumar, G. Khang, D. K. Lim, J. Mater. Chem. B Mater. Biol. Med. 2015, 3, 8433.
| Crossref | GoogleScholarGoogle Scholar |
[6] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Nat. Mater. 2008, 7, 442.
| Crossref | GoogleScholarGoogle Scholar | 18497851PubMed |
[7] S. Palanisamy, B. Thirumalraj, S. M. Chen, M. A. Ali, K. Muthupandi, R. Emmanuel, P. Prakash, F. M. A. Al‐Hemaid, Electroanalysis 2015, 27, 1998.
| Crossref | GoogleScholarGoogle Scholar |
[8] H. H. Mai, V. E. Kaydashev, V. K. Tikhomirov, E. Janssens, M. V. Shestakov, M. Meledina, S. Turner, G. V. Tendeloo, V. V. Moshchalkov, P. Lievens, J. Phys. Chem. C 2014, 118, 15995.
| Crossref | GoogleScholarGoogle Scholar |
[9] N. Faraji, W. M. M. Yunus, A. Kharazmi, E. Saion, Optik 2014, 125, 2809.
| Crossref | GoogleScholarGoogle Scholar |
[10] I. M. Chung, I. Park, S. H. Kim, M. Thiruvengadam, G. Rajakumar, Nanoscale Res. Lett. 2016, 11, 40.
| Crossref | GoogleScholarGoogle Scholar | 26821160PubMed |
[11] J. John, R. M. Mathew, I. Rejeena, R. Jayakrishnan, S. Mathew, V. Thomas, A. Mujeeb, J. Mol. Liq. 2019, 279, 63.
| Crossref | GoogleScholarGoogle Scholar |
[12] C. Karuppiah, K. Muthupandi, S. M. Chen, M. A. Ali, S. Palanisamy, A. Rajan, P. Prakash, F. M. A. Al-Hemaid, B. S. Lou, RSC Adv. 2015, 5, 31139.
| Crossref | GoogleScholarGoogle Scholar |
[13] B. Vellaichamy, P. Prakash, RSC Adv. 2016, 6, 35778.
| Crossref | GoogleScholarGoogle Scholar |
[14] S. A. Moon, B. K. Salunke, B. Alkotaini, E. Sathiyamoorthi, B. S. Kim, IET Nanobiotechnol. 2015, 9, 220.
| Crossref | GoogleScholarGoogle Scholar | 26224352PubMed |
[15] B. Zheng, T. Kong, X. Jing, T. Odoom-Wubah, X. Li, D. Sun, F. Lu, Y. Zheng, J. Huang, Q. Li, J. Colloid Interface Sci. 2013, 396, 138.
| Crossref | GoogleScholarGoogle Scholar | 23403109PubMed |
[16] H. Chen, J. Wang, D. Huang, X. Chen, J. Zhu, D. Sun, J. Huang, Q. Li, Mater. Lett. 2014, 122, 166.
| Crossref | GoogleScholarGoogle Scholar |
[17] P. Kuppusamy, M. M. Yusoff, G. P. Maniam, N. Govindan, Saudi Pharm. J. 2016, 24, 473.
| Crossref | GoogleScholarGoogle Scholar | 27330378PubMed |
[18] P. C. Nagajyothi, P. Muthuraman, T. V. M. Sreekanth, D. H. Kim, J. Shim, Arab. J. Chem. 2017, 10, 215.
| Crossref | GoogleScholarGoogle Scholar |
[19] P. N. Day, R. Pachter, K. A. Nguyen, T. P. Bigioni, J. Phys. Chem. A 2016, 120, 507.
| Crossref | GoogleScholarGoogle Scholar | 26730764PubMed |
[20] U. M. Parvin, M. B. Ahamed, Optik 2015, 126, 551.
| Crossref | GoogleScholarGoogle Scholar |
[21] R. K. Choubey, S. Medhekar, R. Kumar, S. Mukherjee, S. Kumar, J. Mater. Sci. Mater. Electron. 2014, 25, 1410.
| Crossref | GoogleScholarGoogle Scholar |
[22] A. N. Dhinaa, A. Y. Nooraldeen, K. Murali, P. K. Palanisamy, Laser Phys. 2008, 18, 1212.
| Crossref | GoogleScholarGoogle Scholar |
[23] U. Tripathy, S. Rallabandi, P. B. Bisht, Opt. Mater. 2017, 72, 233.
| Crossref | GoogleScholarGoogle Scholar |
[24] C. V. Bindhu, S. S. Harilal, G. K. Varier, R. C. Issac, V. P. N. Nampoori, C. P. G. Vallabhan, J. Phys. D Appl. Phys. 1996, 29, 1074.
| Crossref | GoogleScholarGoogle Scholar |
[25] C. D. Tran, F. Prosenc, M. Franko, G. Benzi, ACS Appl. Mater. Interfaces 2016, 8, 34791.
| Crossref | GoogleScholarGoogle Scholar | 27998108PubMed |
[26] J. John, L. Thomas, N. A. George, A. Kurian, S. D. George, Phys. Chem. Chem. Phys. 2015, 17, 15813.
| Crossref | GoogleScholarGoogle Scholar | 26017461PubMed |
[27] E. S. Aazam, Z. Zaheer, Bioprocess Biosyst. Eng. 2016, 39, 575.
| Crossref | GoogleScholarGoogle Scholar | 26796584PubMed |
[28] S. Ahmed, M. Ahmad, B. L. Swami, S. Ikram, J. Adv. Res. 2016, 7, 17.
| Crossref | GoogleScholarGoogle Scholar | 26843966PubMed |
[29] G. Mie, Ann. Phys. 1908, 330, 377.
| Crossref | GoogleScholarGoogle Scholar |
[30] W. Rasheed, M. R. Shah, M. H. Kazmi, K. Shah, S. Afridi, New J. Chem. 2016, 40, 5546.
| Crossref | GoogleScholarGoogle Scholar |
[31] A. Ajaypraveenkumar, J. Henry, K. Mohanraj, G. Sivakumar, S. Umamaheswari, J. Mater. Sci. Technol. 2015, 31, 1125.
| Crossref | GoogleScholarGoogle Scholar |
[32] H. C. S. Kumar, B. R. Bhat, B. J. Rudresha, R. Ravindra, R. Philip, Chem. Phys. Lett. 2010, 494, 95.
| Crossref | GoogleScholarGoogle Scholar |
[33] Z. Dehghani, S. Nazerdeylami, E. S. Iranizad, M. H. M. Ara, J. Phys. Chem. Solids 2011, 72, 1008.
| Crossref | GoogleScholarGoogle Scholar |
[34] R. Sathyavathi, M. B. Krishna, S. V. Rao, R. Saritha, D. N. Rao, Adv. Sci. Lett. 2010, 3, 138.
| Crossref | GoogleScholarGoogle Scholar |
[35] Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, Y. Song, Opt. Commun. 2005, 251, 429.
| Crossref | GoogleScholarGoogle Scholar |
[36] E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, V. Pustovoi, Chem. Phys. Lett. 2002, 357, 336.
| Crossref | GoogleScholarGoogle Scholar |
[37] D. D. David, Y. Yoon, R. W. Boyd, C. E. Banks, M. S. Paley, Proc. SPIE 1999, 3793, 74.
| Crossref | GoogleScholarGoogle Scholar |
[38] N. Venkatram, D. N. Rao, M. A. Akundi, Opt. Express 2005, 13, 867.
| Crossref | GoogleScholarGoogle Scholar | 19494948PubMed |
[39] Z. B. Liu, Y. F. Xu, X. Y. Zhang, X. L. Zhang, Y. S. Chen, J. G. Tian, J. Phys. Chem. B 2009, 113, 9681.
| Crossref | GoogleScholarGoogle Scholar | 19569625PubMed |
[40] X. L. Zhang, X. Zhao, Z. B. Liu, S. Shi, W. Y. Zhou, J. G. Tian, Y. F. Xu, Y. S. Chen, J. Opt. 2011, 13, 075202.
| Crossref | GoogleScholarGoogle Scholar |
[41] B. Yu, G. Yin, C. Zhu, F. Gan, Opt. Mater. 1998, 11, 17.
| Crossref | GoogleScholarGoogle Scholar |
[42] B. Yu, C. Zhu, F. Gan, X. Wu, G. Zhang, G. Tang, W. Chen, Opt. Mater. 1997, 8, 249.
| Crossref | GoogleScholarGoogle Scholar |
[43] E. Shahriari, W. M. M. Yunus, K. Naghavi, E. Saion, Am. J. Eng. Appl. Sci. 2010, 3, 260.
| Crossref | GoogleScholarGoogle Scholar |
[44] M. Kumar, C. S. S. Sandeep, G. Kumar, Y. K. Mishra, R. Philip, G. B. Reddy, Plasmonics 2014, 9, 129.
| Crossref | GoogleScholarGoogle Scholar |
[45] R. Gill, L. Tian, W. R. C. Somerville, E. C. L. Ru, H. van Amerongen, V. Subramaniam, J. Phys. Chem. C 2012, 116, 16687.
| Crossref | GoogleScholarGoogle Scholar |
[46] M. Liu, M. Franko, Int. J. Thermophys. 2016, 37, 67.
| Crossref | GoogleScholarGoogle Scholar |
[47] R. D. Snook, R. D. Lowe, Analyst 1995, 120, 2051.
| Crossref | GoogleScholarGoogle Scholar |
[48] R. C. C. Leite, R. S. Moore, J. R. Whinnery, Appl. Phys. Lett. 1964, 5, 141.
| Crossref | GoogleScholarGoogle Scholar |
[49] E. Shahriari, M. Moradi, M. Raeis, J. Theor. Appl. Phys. 2016, 10, 259.
| Crossref | GoogleScholarGoogle Scholar |
[50] I. Rejeena, B. Lillibai, V. Thomas, V. P. N. Nampoori, P. Radhakrishnan, J. Fluoresc. 2016, 26, 1161.
| Crossref | GoogleScholarGoogle Scholar | 27165040PubMed |
[51] I. Rejeena, V. Thomas, S. Mathew, B. Lillibai, V. P. N. Nampoori, P. Radhakrishnan, J. Fluoresc. 2016, 26, 1549.
| Crossref | GoogleScholarGoogle Scholar | 27465706PubMed |
[52] R. Sivakami, S. Dhanuskodi, Appl. Surf. Sci. 2015, 351, 977.
| Crossref | GoogleScholarGoogle Scholar |
[53] M. Noroozi, S. Radiman, A. Zakaria, S. Soltaninejad, Nanoscale Res. Lett. 2014, 9, 645.
| Crossref | GoogleScholarGoogle Scholar | 25489293PubMed |
[54] E. Shahriari, M. G. Varnamkhasti, R. Zamiri, Optik 2015, 126, 2104.
| Crossref | GoogleScholarGoogle Scholar |
[55] R. B. Martin, M. J. Meziani, P. Pathak, J. E. Riggs, D. E. Cook, S. Perera, Y. P. Sun, Opt. Mater. 2007, 29, 788.