Effect of Aging Methods on CuZnAl Catalysts for Methyl Acetate Hydrogenation
Changna Gan A , Yunhao Wang A , Chenliang Ye A and Cuili Guo A BA School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
B Corresponding author. Email: gcl@tju.edu.cn
Australian Journal of Chemistry 72(6) 417-424 https://doi.org/10.1071/CH18534
Submitted: 28 October 2018 Accepted: 8 February 2019 Published: 22 March 2019
Abstract
A series of CuZnAl catalysts derived from layered double hydroxide precursors with different Cu/Zn molar ratios were synthesised by a co-precipitation method for methyl acetate hydrogenation. The best catalytic performance was obtained when the Cu/Zn molar ratio reached 0.25 : 1. After fixing the Cu/Zn molar ratio at 0.25 : 1, the effect of aging methods, including ultrasound, high shear mixer stirring, and magnetic stirring, were investigated, which showed that 0.25CuZnAl-u and 0.25CuZnAl-h exhibited a higher conversion and selectivity than that of 0.25CuZnAl-m, especially under low reaction temperatures. The physicochemical properties of the CuZnAl catalysts were characterised by X-ray diffraction, inductively coupled plasma–atomic emission spectroscopy, N2 physisorption, N2O chemisorption, transmission electron microscopy, H2-temperature-programmed reduction, X-ray photoelectron spectroscopy, and H2-temperature-programmed desorption. It was found that compared with 0.25CuZnAl-m, 0.25CuZnAl-u and 0.25CuZnAl-h possessed a stronger interaction between Cu and the support, smaller copper particle size, and higher copper dispersion, which improved the catalytic performance.
References
[1] M. A. R. Sadip, Y. K. Ali, A. R. Noor, Eng. & Tech. Journal 2011, 29, 1438.[2] M. Balat, H. Balat, Appl. Energy 2009, 86, 2273.
| Crossref | GoogleScholarGoogle Scholar |
[3] J. Goldemberg, Science 2007, 315, 808.
| Crossref | GoogleScholarGoogle Scholar | 17289989PubMed |
[4] C. L. Ye, C. L. Guo, C. W. Sun, Y. Zhang, RSC Adv. 2016, 6, 113796.
| Crossref | GoogleScholarGoogle Scholar |
[5] X. Li, X. San, Y. Zhang, T. Ichii, M. Meng, Y. Tan, N. Tsubaki, ChemSusChem 2010, 3, 1192.
| Crossref | GoogleScholarGoogle Scholar | 20715046PubMed |
[6] Y. Wang, J. Liao, J. Zhang, S. Wang, Y. Zhao, X. Ma, AIChE J. 2017, 63, 2839.
| Crossref | GoogleScholarGoogle Scholar |
[7] Y. Zhao, S. Zhao, Y. Geng, Y. Shen, H. Yue, J. Lv, S. Wang, X. Ma, Catal. Today 2016, 276, 28.
| Crossref | GoogleScholarGoogle Scholar |
[8] J. Liu, P. He, L. Wang, H. Liu, Y. Cao, H. Li, Chin. J. Catal. 2018, 39, 1283.
| Crossref | GoogleScholarGoogle Scholar |
[9] R. P. Ye, L. Lin, Q. Li, Z. Zhou, T. Wang, C. K. Russell, H. Adidharma, Z. Xu, Y. G. Yao, M. Fan, Catal. Sci. Technol. 2018, 8, 3428.
| Crossref | GoogleScholarGoogle Scholar |
[10] Q. Wang, M. Zhu, C. Xu, H. Zhang, X. Wang, B. Dai, J. Zhang, New J. Chem. 2018, 42, 6507.
| Crossref | GoogleScholarGoogle Scholar |
[11] H. Duan, Y. Yang, R. Singh, K. Chiang, S. Wang, P. Xiao, J. Patel, D. Danaci, N. Burke, Y. Zhai, P. A. Webley, Aust. J. Chem. 2014, 67, 907.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. Zhang, Q. Sun, Z. Yan, J. Jing, W. Wei, D. Jiang, J. Xie, M. Chen, Aust. J. Chem. 2013, 66, 564.
| Crossref | GoogleScholarGoogle Scholar |
[13] P. Kumar, V. C. Srivastava, I. M. Mishra, Energy Fuels 2015, 29, 2664.
| Crossref | GoogleScholarGoogle Scholar |
[14] C. Wen, F. Li, Y. Cui, W. L. Dai, K. Fan, Catal. Today 2014, 233, 117.
| Crossref | GoogleScholarGoogle Scholar |
[15] M. Jabłońska, K. Nothdurft, M. Nocuń, V. Girman, R. Palkovits, Appl. Catal. B 2017, 207, 385.
| Crossref | GoogleScholarGoogle Scholar |
[16] D. Wang, X. Zhang, D. Zhou, S. Liu, W. Wei, Fuel Process. Technol. 2017, 167, 404.
| Crossref | GoogleScholarGoogle Scholar |
[17] L. C. Meher, R. Gopinath, S. N. Naik, A. K. Dalai, Ind. Eng. Chem. Res. 2009, 48, 1840.
| Crossref | GoogleScholarGoogle Scholar |
[18] Y. Liao, F. Li, X. Dai, N. Zhao, F. Xiao, Chin. J. Catal. 2017, 38, 1860.
| Crossref | GoogleScholarGoogle Scholar |
[19] Y. Huang, W. Zhang, Z. Yue, X. Zhao, Z. Cheng, Catal. Lett. 2017, 147, 2817.
| Crossref | GoogleScholarGoogle Scholar |
[20] F. Arena, K. Barbera, G. Italiano, G. Bonura, L. Spadaro, F. Frusteri, J. Catal. 2007, 249, 185.
| Crossref | GoogleScholarGoogle Scholar |
[21] H. Qin, C. Zhang, Q. Xu, X. Dang, W. Li, K. Lei, L. Zhou, J. Zhang, Chem. Eng. J. 2017, 319, 307.
| Crossref | GoogleScholarGoogle Scholar |
[22] H. Wang, Y. Li, Y. Zhang, J. Chen, G. Chu, L. Shao, Powder Technol. 2015, 273, 191.
| Crossref | GoogleScholarGoogle Scholar |
[23] C. Yang, J. Zhang, W. Li, S. Shang, C. Guo, Cryst. Res. Technol. 2017, 52, 1700002.
| Crossref | GoogleScholarGoogle Scholar |
[24] L. He, H. Cheng, G. Liang, Y. Yu, F. Zhao, Appl. Catal. A Gen. 2013, 452, 88.
| Crossref | GoogleScholarGoogle Scholar |
[25] D. Li, S. Xu, Y. Cai, C. Chen, Y. Zhan, L. Jiang, Ind. Eng. Chem. Res. 2017, 56, 3175.
| Crossref | GoogleScholarGoogle Scholar |
[26] C. L. Chiang, K. S. Lin, H. W. Chuang, J. Clean. Prod. 2018, 172, 1957.
| Crossref | GoogleScholarGoogle Scholar |
[27] C. L. Ye, C. L. Guo, J. L. Zhang, Fuel Process. Technol. 2016, 143, 219.
| Crossref | GoogleScholarGoogle Scholar |
[28] Z. L. Yuan, L. N. Wang, J. H. Wang, S. X. Xia, P. Chen, Z. Y. Hou, X. M. Zheng, Appl. Catal. B 2011, 101, 431.
| Crossref | GoogleScholarGoogle Scholar |
[29] G. Bonura, M. Cordaro, C. Cannilla, F. Arena, F. Frusteri, Appl. Catal. B 2014, 152–153, 152.
| Crossref | GoogleScholarGoogle Scholar |
[30] Y. P. Zeng, T. C. Zhang, Y. Y. Xu, P. L. Hu, T. Ye, Z. H. Jia, S. G. Ju, RSC Adv. 2016, 6, 6737.
| Crossref | GoogleScholarGoogle Scholar |
[31] S. Xia, Z. Yuan, L. Wang, P. Chen, Z. Hou, Appl. Catal. A Gen. 2011, 403, 173.
| Crossref | GoogleScholarGoogle Scholar |
[32] L. Zhang, F. Li, D. G. Evans, X. Duan, Mater. Chem. Phys. 2004, 87, 402.
| Crossref | GoogleScholarGoogle Scholar |
[33] S. Zhao, H. Yi, X. Tang, F. Gao, Q. Yu, Y. Zhou, J. Wang, Y. Huang, Z. Yang, Ultrason. Sonochem. 2016, 32, 336.
| Crossref | GoogleScholarGoogle Scholar | 27150779PubMed |
[34] M. Manzoli, B. Bonelli, Catalysts 2018, 8, 262.
| Crossref | GoogleScholarGoogle Scholar |
[35] S. Allahyari, M. Haghighi, A. Ebadi, S. Hosseinzadeh, Ultrason. Sonochem. 2014, 21, 663.
| Crossref | GoogleScholarGoogle Scholar | 24409466PubMed |
[36] O. Tursunov, L. Kustov, Z. Tilyabaev, J. Taiwan Inst. Chem. Eng. 2017, 78, 416.
| Crossref | GoogleScholarGoogle Scholar |
[37] R. Khoshbin, M. Haghighi, Chem. Eng. Res. Des. 2013, 91, 1111.
| Crossref | GoogleScholarGoogle Scholar |
[38] J. H. Flores, M. E. H. M. da Costa, M. I. P. da Silva, Chin. J. Catal. 2016, 37, 378.
| Crossref | GoogleScholarGoogle Scholar |
[39] P. Gao, F. Li, H. Zhan, N. Zhao, F. Xiao, W. Wei, L. Zhong, H. Wang, Y. Sun, J. Catal. 2013, 298, 51.
| Crossref | GoogleScholarGoogle Scholar |
[40] P. Gao, F. Li, L. Zhang, N. Zhao, F. Xiao, W. Wei, L. Zhong, Y. Sun, J. CO Util. 2013, 2, 16.
| Crossref | GoogleScholarGoogle Scholar |
[41] P. Gao, L. Zhong, L. Zhang, H. Wang, N. Zhao, W. Wei, Y. Sun, Catal. Sci. Technol. 2015, 5, 4365.
| Crossref | GoogleScholarGoogle Scholar |
[42] F. Arena, G. Italiano, K. Barbera, S. Bordiga, G. Bonura, L. Spadaro, F. Frusteri, Appl. Catal. A Gen. 2008, 350, 16.
| Crossref | GoogleScholarGoogle Scholar |
[43] X. Kong, S. Wu, Y. Jin, L. Liu, J. Liu, Energy Fuels 2017, 31, 12232.
| Crossref | GoogleScholarGoogle Scholar |
[44] D. Bianchi, J. L. Gass, M. Khalfallah, S. J. Teichner, Appl. Catal. A Gen. 1993, 101, 297.
| Crossref | GoogleScholarGoogle Scholar |
[45] C. Zhang, H. Yang, P. Gao, H. Zhu, L. Zhong, H. Wang, W. Wei, Y. Sun, J. CO Util. 2017, 17, 263.
| Crossref | GoogleScholarGoogle Scholar |
[46] S. Xiao, Y. Zhang, P. Gao, L. Zhong, X. Li, Z. Zhang, H. Wang, W. Wei, Y. Sun, Catal. Today 2017, 281, 327.
| Crossref | GoogleScholarGoogle Scholar |
[47] M. S. Spencer, Top. Catal. 1999, 8, 259.
| Crossref | GoogleScholarGoogle Scholar |
[48] J. Lin, X. Zhao, Y. Cui, H. Zhang, D. Liao, Chem. Commun. 2012, 48, 1177.
| Crossref | GoogleScholarGoogle Scholar |