A ZnII-MOF Assembled by Triazine-Based Polycarboxylate and 4,4′-Bipy: Structure, Fluorescent Properties, and Water Vapour Adsorption
Lu Feng A and Hong Zhou A BA College of Chemistry and Environmental Technology, Wuhan Institute of Technology, Wuhan 430073, Hubei, China.
B Corresponding author. Email: hzhouh@126.com
Australian Journal of Chemistry 71(11) 863-867 https://doi.org/10.1071/CH18304
Submitted: 28 June 2018 Accepted: 27 August 2018 Published: 20 September 2018
Abstract
A new flexible triazine-based polycarboxylate metal–organic framework, {[Zn4(TTHA)(4, 4′-bipy)2(OH)2(H2O)]·H2O}n (1), H6TTHA = 1,3,5-triazine-2,4,6-triamine hexaacetic acid, has been synthesised under hydrothermal conditions and structurally characterised by X-ray diffraction, infrared spectroscopy, elemental analysis, and X-ray single-crystal diffraction. Structural studies indicate that 1 exhibits a 3D network with a 4,6-connected topology, formed by the interconnection of tetranuclear units and the ligands. The fluorescence emission properties of 1 and the free ligands were investigated in the solid state at room temperature. Moreover, the fluorescence lifetime (τ) and quantum yield (Φf) were obtained to further characterise the fluorescence properties. In addition, the water vapour adsorption of 1 was first studied for H6TTHA based complexes, which shows a general water adsorption capacity.
References
[1] M. Li, D. Li, M. O’Keeffe, O. M. Yaghi, Chem. Rev. 2014, 114, 1343.| Crossref | GoogleScholarGoogle Scholar |
[2] E. V. Alexandrov, V. A. Blatov, A. V. Kochetkov, D. M. Proserpio, CrystEngComm 2011, 13, 3947.
| Crossref | GoogleScholarGoogle Scholar |
[3] L. Carlucci, G. Ciani, D. M. Proserpio, Coord. Chem. Rev. 2003, 246, 247.
| Crossref | GoogleScholarGoogle Scholar |
[4] H. X. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi, Science 2012, 336, 1018.
| Crossref | GoogleScholarGoogle Scholar |
[5] N. Stock, S. Biswas, Chem. Rev. 2012, 112, 933.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) J. Rocha, L. D. Carlos, F. A. A. Paz, D. Ananias, Chem. Soc. Rev. 2011, 40, 926.
| Crossref | GoogleScholarGoogle Scholar |
(b) F. Gándara, H. Furukawa, S. Lee, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 5271.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. Hu, X. P. Liang, M. Yaseen, X. D. Sun, Z. F. Tong, Z. X. Zhao, Z. X. Zhao, Chem. Eng. J. 2018, 332, 608.
| Crossref | GoogleScholarGoogle Scholar |
(d) E. Coronado, G. M. Espallargas, Chem. Soc. Rev. 2013, 42, 1525.
| Crossref | GoogleScholarGoogle Scholar |
[7] X. Jiang, B. Tao, H. Xia, G. y. Liao, CrystEngComm 2012, 14, 3271.
| Crossref | GoogleScholarGoogle Scholar |
[8] Y. H. Luo, F. X. Yue, X. Y. Yu, L. L. Gu, H. Zhang, X. Chen, CrystEngComm 2013, 15, 8116.
| Crossref | GoogleScholarGoogle Scholar |
[9] S. Wang, H. Xing, Y. Z. Li, J. F. Bai, Y. Pan, M. Scheer, X. Z. You, Eur. J. Inorg. Chem. 2006, 3041.
| Crossref | GoogleScholarGoogle Scholar |
[10] S. N. Wang, J. F. Bai, Y. Z. Li, Y. Pan, M. Scheer, X. Z. You, CrystEngComm 2007, 9, 1084.
| Crossref | GoogleScholarGoogle Scholar |
[11] S. Wang, J. F. Bai, H. Xing, Y. Z. Li, Y. Song, Y. Pan, M. Scheer, X. Z. You, Cryst. Growth Des. 2007, 7, 747.
| Crossref | GoogleScholarGoogle Scholar |
[12] Z. B. Han, G. X. Zhang, M. H. Zeng, D. Q. Yuan, Q. R. Fang, J. R. Li, J. Ribas, H. C. Zhou, Inorg. Chem. 2010, 49, 769.
| Crossref | GoogleScholarGoogle Scholar |
[13] Z. W. Chen, X. N. Mi, J. Lu, S. N. Wang, Y. W. Li, J. M. Dou, D. C. Li, Dalton Trans. 2018, 47, 6240.
| Crossref | GoogleScholarGoogle Scholar |
[14] Y. W. Li, H. Yan, T. L. Hu, H. Y. Ma, D. C. Li, S. N. Wang, Q. X. Yao, J. M. Dou, J. Xu, X. H. Bu, Chem. Commun. 2017, 53, 2394.
| Crossref | GoogleScholarGoogle Scholar |
[15] Z. Q. Yao, G. Y. Li, J. Xu, T. L. Hu, X. H. Bu, Chem. – Eur. J. 2018, 24, 3192.
| Crossref | GoogleScholarGoogle Scholar |
[16] X. T. Liu, Y. Y. Jia, Y. H. Zhang, G. J. Ren, R. Feng, S. Y. Zhang, M. J. Zaworotko, X. H. Bu, Inorg. Chem. Front. 2016, 3, 1510.
| Crossref | GoogleScholarGoogle Scholar |
[17] X. J. Liu, Y. H. Zhang, Z. Chang, A. L. Li, D. Tian, Z. Q. Yao, Y. Y. Jia, X. H. Bu, Inorg. Chem. 2016, 55, 7326.
| Crossref | GoogleScholarGoogle Scholar |
[18] Q. L. Zhu, T. L. Sheng, R. B. Fu, S. M. Hu, C. J. Shen, X. Ma, X. T. Wu, CrystEngComm 2011, 13, 2096.
| Crossref | GoogleScholarGoogle Scholar |
[19] N. Du, J. Song, S. Li, Y. X. Chi, F. Y. Bai, Y. H. Xing, ACS Appl. Mater. Interfaces 2016, 8, 28718.
| Crossref | GoogleScholarGoogle Scholar |
[20] J. Song, X. Gao, Z. N. Wang, C. R. Li, Q. Xu, F. Y. Bai, Z. F. Shi, Y. H. Xing, Inorg. Chem. 2015, 54, 9046.
| Crossref | GoogleScholarGoogle Scholar |
[21] Q. L. Zhu, T. L. Sheng, R. B. Fu, S. M. Hu, L. Chen, C. J. Shen, X. Ma, X. T. Wu, Chem. – Eur. J. 2011, 17, 3358.
| Crossref | GoogleScholarGoogle Scholar |
[22] P. K. Goswami, M. Singh, R. Thaimattam, A. Ramanan, CrystEngComm 2013, 15, 9787.
| Crossref | GoogleScholarGoogle Scholar |
[23] S. N. Wang, R. Sun, X. S. Wang, Y. Z. Li, Y. Pan, J. F. Bai, M. Scheer, X. Z. You, CrystEngComm 2007, 9, 1051.
| Crossref | GoogleScholarGoogle Scholar |
[24] ASHRAE, Ventilation for Acceptable Indoor Air Quality (ANSI/ASHRAE Standard 62.1–2010) 2010 (American Society of Heating, Refrigerating, and Air Conditioning Engineers: Atlanta, GA).
[25] S. A. Grinshpun, A. Adhikari, T. Honda, K. Y. Kim, M. Toivola, K. S. R. Rao, T. Reponen, Environ. Sci. Technol. 2007, 41, 606.
| Crossref | GoogleScholarGoogle Scholar |
[26] P. de Hoog, P. Gamez, W. L. Driessen, J. Reedijk, Tetrahedron Lett. 2002, 43, 6783.
| Crossref | GoogleScholarGoogle Scholar |
[27] M. Er, R. Ustabaş, U. Coruh, K. Sancak, E. Vázquez-López, Int. J. Mol. Sci. 2008, 9, 1000.
| Crossref | GoogleScholarGoogle Scholar |
[28] G. M. Sheldrick, SADABS: Program for Empirical Absorption Correction of Area Detector Data 1996 (University of Göttingen: Göttingen, Germany).
[29] G. M. Sheldrick, SHELX2013, Programs for Crystal Structure Analysis 1998 (Institüt für Anorganische Chemie der Universität: Göttingen, Germany).
[30] X. L. Wang, X. M. Wu, G. C. Liu, N. L. Chen, H. Y. Lin, X. Wang, Aust. J. Chem. 2016, 69, 846.
| Crossref | GoogleScholarGoogle Scholar |
[31] H. Xia, X. Jiang, C. Jiang, G. Liao, Russ. J. Coord. Chem. 2014, 40, 93.
| Crossref | GoogleScholarGoogle Scholar |
[32] S. Surinwong, B. Yotnoi, T. J. Prior, A. Rujiwatra, J. Inorg. Organomet. Polym. 2013, 23, 1032.
| Crossref | GoogleScholarGoogle Scholar |
[33] H. Zhou, L. Chen, R. Chen, Z. H. Peng, Y. Song, Z. Q. Pan, Q. M. Huang, X. L. Hu, Z. W. Bai, CrystEngComm 2009, 11, 671.
| Crossref | GoogleScholarGoogle Scholar |
[34] M. Rodríguez, A. Liobet, M. Corbella, A. E. Martell, J. Reibenspies, Inorg. Chem. 1999, 38, 2328.
| Crossref | GoogleScholarGoogle Scholar |
[35] I. A. Baburin, V. A. Blatov, L. Carlucci, G. Ciani, D. M. Proserpio, J. Solid State Chem. 2005, 178, 2452.
| Crossref | GoogleScholarGoogle Scholar |
[36] V. A. Blatov, Struct. Chem. 2012, 23, 955.
| Crossref | GoogleScholarGoogle Scholar |
[37] K. Sakai, S. Takahashi, A. Kobayashi, T. Akutagawa, T. Nakamura, M. Dosen, M. Kato, U. Nagashima, Dalton Trans. 2010, 39, 1989.
| Crossref | GoogleScholarGoogle Scholar |
[38] Q. L. Zhu, T. L. Sheng, C. H. Tan, S. M. Hu, R. B. Fu, X. T. Wu, Inorg. Chem. 2011, 50, 7618.
| Crossref | GoogleScholarGoogle Scholar |
[39] H. Furukawa, F. Gándara, Y. B. Zhang, J. C. Jiang, W. L. Queen, M. R. Hudson, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 4369.
| Crossref | GoogleScholarGoogle Scholar |
[40] R. G. AbdulHalim, P. M. Bhatt, Y. Belmabkhout, A. Shkurenko, K. Adil, L. J. Barbour, M. Eddaoudi, J. Am. Chem. Soc. 2017, 139, 10715.
[41] D. O’Nolan, A. Kumar, M. J. Zaworotko, J. Am. Chem. Soc. 2017, 139, 8508.
| Crossref | GoogleScholarGoogle Scholar |
[42] Y. Chen, B. Wang, X. Q. Wang, L. H. Xie, J. P. Li, Y. B. Xie, J. R. Li, ACS Appl. Mater. Interfaces 2017, 9, 27027.
| Crossref | GoogleScholarGoogle Scholar |