Competitive 1,3-Dipolar Cycloaddition Reactions of an Azomethine Ylide with Aromatic and Carbonyl Groups of Nitro-Substituted Isatoic Anhydrides
Asha M. D’Souza A , Daniel J. Rivinoja C , Roger J. Mulder A , Jonathan M. White B , Adam G. Meyer A , Christopher J. T. Hyland C and John H. Ryan A DA CSIRO Manufacturing, Ian Wark Laboratory, Bayview Avenue, Clayton, Vic. 3168, Australia.
B School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Vic. 3010, Australia.
C School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia.
D Corresponding author. Email: jack.ryan@csiro.au
Australian Journal of Chemistry 71(9) 690-696 https://doi.org/10.1071/CH18196
Submitted: 2 May 2018 Accepted: 11 June 2018 Published: 11 July 2018
Abstract
A study of the reactivity of a non-stabilised azomethine ylide, derived from N-(methoxymethyl)-N-(trimethylsilylmethyl)benzylamine, with nitro-substituted isatoic anhydrides was undertaken. N-Methyl-4-nitroisatoic anhydride underwent a 1,3-dipolar cycloaddition reaction exclusively at the isatoic anhydride C1-carbonyl group, followed by decarboxylative rearrangement to yield a benzo-1,3-diazepin-5-one derivative. In contrast, N-methyl-5-nitroisatoic anhydride underwent competing cycloaddition processes to the isatoic anhydride C1-carbonyl group and to the nitro-substituted aromatic ring. The dearomative addition reaction resulted in the formation of novel tetracyclic products.
References
[1] S. P. Roche, J. A. Porco, Angew. Chem. Int. Ed. 2011, 50, 4068.| Crossref | GoogleScholarGoogle Scholar |
[2] C.-X. Zhuo, W. Zhang, S.-L. You, Angew. Chem. Int. Ed. 2012, 51, 12662.
| Crossref | GoogleScholarGoogle Scholar |
[3] D. M. Kuznetsov, O. A. Mukhina, A. G. Kutateladze, Angew. Chem. Int. Ed. 2016, 55, 6988.
| Crossref | GoogleScholarGoogle Scholar |
[4] H. V. Pham, A. S. Karns, C. D. Vanderwal, K. N. Houk, J. Am. Chem. Soc. 2015, 137, 6956.
| Crossref | GoogleScholarGoogle Scholar |
[5] G. Stork, A. Yamashita, J. Adams, G. R. Schulte, R. Chesworth, Y. Miyazaki, J. J. Farmer, J. Am. Chem. Soc. 2009, 131, 11402.
| Crossref | GoogleScholarGoogle Scholar |
[6] D. B. C. Martin, C. D. Vanderwal, J. Am. Chem. Soc. 2009, 131, 3472.
| Crossref | GoogleScholarGoogle Scholar |
[7] Y. S. Gee, D. J. Rivinoja, S. M. Wales, M. G. Gardiner, J. H. Ryan, C. J. T. Hyland, J. Org. Chem. 2017, 82, 13517.
| Crossref | GoogleScholarGoogle Scholar |
[8] D. J. Rivinoja, Y. S. Gee, M. G. Gardiner, J. H. Ryan, C. J. T. Hyland, ACS Catal. 2017, 7, 1053.
| Crossref | GoogleScholarGoogle Scholar |
[9] E. L. Campbell, A. M. Zuhl, C. M. Liu, D. L. Boger, J. Am. Chem. Soc. 2010, 132, 3009.
| Crossref | GoogleScholarGoogle Scholar |
[10] N. Shimada, T. Oohara, J. Krishnamurthi, H. Nambu, S. Hashimoto, Org. Lett. 2011, 13, 6284.
| Crossref | GoogleScholarGoogle Scholar |
[11] B. M. Trost, V. Ehmke, M. O’ Keefe, D. A. Bringley, J. Am. Chem. Soc. 2014, 136, 8213.
| Crossref | GoogleScholarGoogle Scholar |
[12] J. Ling, S. Lam, K. H. Low, P. Chiu, Angew. Chem. Int. Ed. 2017, 56, 8879.
| Crossref | GoogleScholarGoogle Scholar |
[13] G. Mei, H. Yuan, Y. Gu, W. Chen, L. W. Chung, C. C. Li, Angew. Chem. Int. Ed. 2014, 53, 11051.
| Crossref | GoogleScholarGoogle Scholar |
[14] J. Preindl, S. Chakrabarty, J. Waser, Chem. Sci. 2017, 8, 7112.
| Crossref | GoogleScholarGoogle Scholar |
[15] Q. Cheng, F. Zhang, Y. Cai, Y. L. Guo, S.-L. You, Angew. Chem. Int. Ed. 2018, 57, 2134.
| Crossref | GoogleScholarGoogle Scholar |
[16] D.-F. Yue, J.-Q. Zhao, X.-Z. Chen, Y. Zhou, X.-M. Zhang, X.-Y. Xu, W.-C. Yuan, Org. Lett. 2017, 19, 4508.
| Crossref | GoogleScholarGoogle Scholar |
[17] L. W. Hernandez, U. Klöckner, J. Pospech, L. Hauss, D. Sarlah, J. Am. Chem. Soc. 2018, 140, 4503.
| Crossref | GoogleScholarGoogle Scholar |
[18] J. H. Ryan, ARKIVOC 2015, 160.
| Crossref | GoogleScholarGoogle Scholar |
[19] R. Huisgen, W. Scheer, Tetrahedron Lett. 1971, 12, 481.
| Crossref | GoogleScholarGoogle Scholar |
[20] B. R. Henke, A. J. Kouklis, C. H. Heathcock, J. Org. Chem. 1992, 57, 7056.
| Crossref | GoogleScholarGoogle Scholar |
[21] S. Roy, T. L. S. Kishbaugh, J. P. Jasinski, G. W. Gribble, Tetrahedron Lett. 2007, 48, 1313.
| Crossref | GoogleScholarGoogle Scholar |
[22] M. A. Bastrakov, A. M. Starosotnikov, S. Y. Pechenkin, V. V. Kachala, I. V. Glukhov, S. A. Shevelev, J. Heterocycl. Chem. 2010, 47, 893.
| Crossref | GoogleScholarGoogle Scholar |
[23] S. Lee, I. Chataigner, S. R. Piettre, Angew. Chem. Int. Ed. 2011, 50, 472.
| Crossref | GoogleScholarGoogle Scholar |
[24] S. Lee, S. Diab, P. Queval, M. Sebban, I. Chataigner, S. R. Piettre, Chem. – Eur. J. 2013, 19, 7181.
| Crossref | GoogleScholarGoogle Scholar |
[25] J. H. Ryan, N. Spiccia, L. S.-M. Wong, A. B. Holmes, Aust. J. Chem. 2007, 60, 898.
| Crossref | GoogleScholarGoogle Scholar |
[26] A. M. D’Souza, N. Spiccia, J. Basutto, P. Jokisz, L. S.-M. Wong, A. G. Meyer, A. B. Holmes, J. M. White, J. H. Ryan, Org. Lett. 2011, 13, 486.
| Crossref | GoogleScholarGoogle Scholar |
[27] H. Santos, A. Distiller, A. M. D’Souza, Q. Arnoux, J. M. White, A. G. Meyer, J. H. Ryan, Org. Chem. Front. 2015, 2, 705.
| Crossref | GoogleScholarGoogle Scholar |
[28] A. G. Meyer, J. H. Ryan, Molecules 2016, 21, 935.
| Crossref | GoogleScholarGoogle Scholar |
[29] G. Wang, X. Chen, Y. Deng, Z. Li, X. Xu, J. Agric. Food Chem. 2015, 63, 6883.
| Crossref | GoogleScholarGoogle Scholar |
[30] J. Guiles, X. Sun, I. A. Critchley, U. Ochsner, M. Tregay, K. Stone, J. Bertino, L. Green, R. Sabin, F. Dean, H. G. Dallmann, C. S. McHenry, N. Janjic, Bioorg. Med. Chem. Lett. 2009, 19, 800.
| Crossref | GoogleScholarGoogle Scholar |
[31] R. Turner, K. Shefer, M. Ares, RNA 2013, 19, 1857.
| Crossref | GoogleScholarGoogle Scholar |
[32] H. Rupe, L. Kersten, Helv. Chim. Acta 1926, 9, 578.
| Crossref | GoogleScholarGoogle Scholar |
[33] G. E. Hardtmann, G. Koletar, O. R. Pister, J. Heterocycl. Chem. 1975, 12, 565.
| Crossref | GoogleScholarGoogle Scholar |
[34] R. K. Harris, E. D. Becker, S. M. Cabral de Menzies, R. Goodfellow, P. Granger, Pure Appl. Chem. 2001, 73, 1795.
| Crossref | GoogleScholarGoogle Scholar |
[35] R. K. Harris, E. D. Becker, S. M. Cabral de Menzies, P. Granger, R. E. Hoffman, K. W. Zilm, Pure Appl. Chem. 2008, 80, 59.
| Crossref | GoogleScholarGoogle Scholar |
[36] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
| Crossref | GoogleScholarGoogle Scholar |
[37] R. K. Kharul, P. N. Prajapati, A. A. Thorave, H. A. Shah, A. Dhar, D. A. Joshi, M. R. Jain, P. R. Patel, S. S. Pancholi, Synth. Commun. 2011, 41, 3265.
| Crossref | GoogleScholarGoogle Scholar |
[38] G. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[39] L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565.
| Crossref | GoogleScholarGoogle Scholar |
[40] L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837.
| Crossref | GoogleScholarGoogle Scholar |