Magnetic and Optical Properties of Novel Lanthanide(iii) Complexes Based on Schiff Base and β-Diketonate Ligands
Yufeng Jia A , Hongfeng Li A , Peng Chen A , Ting Gao A B C , Wenbin Sun A and Pengfei Yan A CA Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, China.
B Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, College of Heilongjiang Province, No. 74, Xuefu Road, Nangang District, Harbin 150080, China.
C Corresponding authors. Email: gaotingmail@sina.cn; yanpf@vip.sina.com
Australian Journal of Chemistry 71(7) 527-533 https://doi.org/10.1071/CH18136
Submitted: 2 April 2018 Accepted: 11 June 2018 Published: 18 July 2018
Abstract
A series of lanthanide-based self-assembling complexes constructed from Schiff base and β-diketonate ligands have been synthesised by the same method. They are one dimensional complexes ({[Ln(H2L)(tta)2(OAc)]·0.5H2O}n (Ln = Eu (1), Gd (2), Dy (3), Yb (4)); H2L = N,N′-bis(salicylidene)butane-1,4-diamine, tta = 2-thenoyltrifluoroacetone). Complexes 1 and 4 exhibit characteristic metal-centred emission in the solid state. The lifetimes and quantum yields of luminescence were also determined. Magnetic analysis reveals that complex 3 exhibits field-induced single-molecule magnet (SMM) behaviour with an energy barrier of 24.07 K.
References
[1] T. Gao, P. F. Yan, G. M. Li, G. F. Hou, J. S. Gao, Inorg. Chim. Acta 2008, 361, 2051.| Crossref | GoogleScholarGoogle Scholar |
[2] P. F. Yan, P. H. Lin, F. Habib, T. Aharen, M. Murugesu, Z. P. Deng, G. M. Li, W. B. Sun, Inorg. Chem. 2011, 50, 7059.
| Crossref | GoogleScholarGoogle Scholar |
[3] P. H. Lin, W. B. Sun, M. F. Yu, G. M. Li, P. F. Yan, M. Murugesu, Chem. Commun. 2011, 47, 10993.
| Crossref | GoogleScholarGoogle Scholar |
[4] Y. Y. Zhu, X. Guo, C. Cui, B. W. Wang, Z. M. Wang, S. Gao, Chem. Commun. 2011, 47, 8049.
| Crossref | GoogleScholarGoogle Scholar |
[5] H. S. Ke, G. F. Xu, Y. N. Guo, P. Gamez, C. M. Beavers, S. J. Teat, J. K. Tang, Chem. Commun. 2010, 46, 6057.
| Crossref | GoogleScholarGoogle Scholar |
[6] O. Sun, T. Gao, J. W. Sun, G. M. Li, H. F. Li, H. Xu, C. Wang, P. F. Yan, CrystEngComm 2014, 16, 10460.
| Crossref | GoogleScholarGoogle Scholar |
[7] X. Hu, W. Dou, C. Xu, X. Tang, J. Zheng, W. Liu, Dalton Trans. 2011, 40, 3412.
| Crossref | GoogleScholarGoogle Scholar |
[8] D. P. Li, X. P. Zhang, T. W. Wang, B. B. Ma, C. H. Li, Y. Z. Li, X. Z. You, Chem. Commun. 2011, 47, 6867.
| Crossref | GoogleScholarGoogle Scholar |
[9] C. Benelli, D. Gatteschi, Chem. Rev. 2002, 102, 2369.
| Crossref | GoogleScholarGoogle Scholar |
[10] D. R. van Staveren, G. A. V. Albada, J. G. Haasnoot, H. Kooijman, A. M. M. Lanfredi, P. J. Nieuwenhuizen, A. L. Spek, F. Ugozzoli, T. Weyhermüller, J. Reedijk, Inorg. Chim. Acta 2001, 315, 163.
| Crossref | GoogleScholarGoogle Scholar |
[11] X. P. Yang, R. A. Jones, M. M. Oye, A. L. Holmes, W. K. Wong, Cryst. Growth Des. 2006, 6, 2122.
| Crossref | GoogleScholarGoogle Scholar |
[12] S. Liao, X. P. Yang, R. A. Jones, Cryst. Growth Des. 2012, 12, 970.
| Crossref | GoogleScholarGoogle Scholar |
[13] X. P. Yang, R. A. Jones, J. Am. Chem. Soc. 2005, 127, 7686.
| Crossref | GoogleScholarGoogle Scholar |
[14] Y. N. Guo, G. F. Xu, W. Wernsdorfer, L. Ungur, Y. Guo, J. K. Tang, H. J. Zhang, L. F. Chibotaru, A. K. Powell, J. Am. Chem. Soc. 2011, 133, 11948.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. Long, F. Habib, P. H. Lin, I. Korobkov, G. Enright, L. Ungur, W. Wernsdorfer, L. F. Chibotaru, M. Murugesu, J. Am. Chem. Soc. 2011, 133, 5319.
| Crossref | GoogleScholarGoogle Scholar |
[16] F. Habib, P. H. Lin, J. Long, I. Korobkov, W. Wernsdorfer, M. Murugesu, J. Am. Chem. Soc. 2011, 133, 8830.
| Crossref | GoogleScholarGoogle Scholar |
[17] C. Benelli, D. Gatteschi, Chem. Rev. 2002, 102, 2369.
| Crossref | GoogleScholarGoogle Scholar |
[18] S. D. Jiang, B. W. Wang, G. Su, Z. M. Wang, S. Gao, Angew. Chem. Int. Ed. 2010, 49, 7448.
| Crossref | GoogleScholarGoogle Scholar |
[19] N. F. Chilton, S. K. Langley, B. Moubaraki, A. Soncini, S. R. Batten, K. S. Murray, Chem. Sci. 2013, 4, 1719.
| Crossref | GoogleScholarGoogle Scholar |
[20] D. P. Li, X. P. Zhang, T. W. Wang, B. B. Ma, C. H. Li, Y. Z. Li, X. Z. You, Chem. Commun. 2011, 47, 6867.
| Crossref | GoogleScholarGoogle Scholar |
[21] K. Binnemans, Y. G. Galyametdinov, R. V. Deun, D. W. Bruce, S. R. Collinson, A. P. Polishchuk, I. Bikchantaev, W. Haase, A. V. Prosvirin, L. Tinchurina, I. Litvinov, A. Gubajdullin, A. Rakhmatullin, K. Uytterhoeven, L. V. Meervelt, J. Am. Chem. Soc. 2000, 122, 4335.
| Crossref | GoogleScholarGoogle Scholar |
[22] S. L. Yang, R. R. Wang, X. J. Jin, C. X. Zhang, Q. L. Wang, Polyhedron 2018, 144, 101.
| Crossref | GoogleScholarGoogle Scholar |
[23] G. A. Crosby, R. E. Whan, J. J. Freeman, J. Phys. Chem. 1962, 66, 2493.
| Crossref | GoogleScholarGoogle Scholar |
[24] M. Latva, H. Takalo, V. M. Mukkala, C. Matachescu, J. C. Rodrίguez-Ubis, J. Kankare, J. Lumin. 1997, 75, 149.
| Crossref | GoogleScholarGoogle Scholar |
[25] S. Osa, T. Kido, N. Matsumoto, N. Re, A. Pochaba, J. Mrozinski, J. Am. Chem. Soc. 2004, 126, 420.
| Crossref | GoogleScholarGoogle Scholar |
[26] A. Lennartson, M. Vestergren, M. Hakansson, Chem. - Eur. J. 2005, 11, 1757.
| Crossref | GoogleScholarGoogle Scholar |
[27] F. Lam, J. X. Xu, K. S. Chan, J. Org. Chem. 1996, 61, 8414.
| Crossref | GoogleScholarGoogle Scholar |
[28] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar |
[29] G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[30] A. L. Speck, Acta Crystallogr. Sect. C 2015, C71, 9.
| Crossref | GoogleScholarGoogle Scholar |