Composite Membrane with a Calixarene-Containing Polyamide Functional Layer
Shun Ren A , Dong-Qing Liu A C , Rui-Xiang Miao A , Ze-Xian Zhu A and Yu-Feng Zhang A BA State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
B School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
C Corresponding author. Email: ldqnov@163.com
Australian Journal of Chemistry 71(5) 360-365 https://doi.org/10.1071/CH18038
Submitted: 25 January 2018 Accepted: 3 March 2018 Published: 27 March 2018
Abstract
Monolayer thin films were prepared at the interface of hexane and water to investigate the film formation ability of monomers through interfacial polymerization (IP). A tetra-calix[4]arene chloride derivative (CC) and a diamino-terminated PEG-1000 (DAP) produced a high strength membrane among the tested monomers. IP is consequently proposed to prepare a composite membrane with CC and DAP on a polysulfone (PSF) bulk membrane used for ultrafiltration. The top layer was cross-linked by heat-treating at 60°C for 2 min, with DAP (2 wt.-%) in water and CC (0.05 wt.-%) in hexane. Attenuated total reflectance (ATR)-FTIR and X-ray photoelectron spectroscopy data confirmed that a polyamide was formed on the surface of the PSF substrate. The skin layer was a 3 μm thick smooth thin-film as determined by field emission scanning electron microscopy (FE-SEM), and was also compact without gaps. Pure water flux was ~80.5 L m−2 h−1 under 0.5 MPa. Rejection of MgSO4 was round 22 %, since the calixarene-containing network was a sparse grid, and also had an affinity for metal cations. Although the skin of the composite membrane was compact under SEM, it was easy for metal cations to transfer through. This composite membrane might have good performance in other separation areas as a result of the special structure imparted by using the calixarenes as cross-linking knots.
References
[1] B. S. Lalia, V. Kochkodan, R. Hashaikeh, Desalination 2013, 326, 77.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGlurrE&md5=9c862b7cacdf6b811832487869b26febCAS |
[2] P. Vandezande, L. E. M. Gevers, I. F. J. Vankelecom, Chem. Soc. Rev. 2008, 37, 365.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVGgsA%3D%3D&md5=8fd7738dd2649dd9a1b8c1cfb200b69aCAS |
[3] S. Verissimo, K. V. Peinemann, J. Bordado, J. Membr. Sci. 2006, 279, 266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsVyrsLg%3D&md5=32958128df16f152c3a5162529236756CAS |
[4] J. B. Jin, D. Q. Liu, D. D. Zhang, Desalination 2015, 355, 141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVWmurzN&md5=9a694e34a9e32db3b1b4720c39e005ebCAS |
[5] A. P. Rao, N. V. Desai, R. Rangarajan, J. Membr. Sci. 1997, 124, 263.
| Crossref | GoogleScholarGoogle Scholar |
[6] R. J. Zhang, S. L. Yu, W. X. Shi, J. Membr. Sci. 2017, 542, 68.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtlSlsL7K&md5=ad17818768e17b30e8333d87e33023c8CAS |
[7] W. Zhu, P. Gou, Z. Shen, Macromol. Symp. 2008, 261, 74.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivVaitL8%3D&md5=be37d84fa2095e6d34ad9d0862b49e7bCAS |
[8] S. Dong, B. Zheng, F. Wang, F. Huang, Acc. Chem. Res. 2014, 47, 1982.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltF2msb4%3D&md5=28e10826e584cac04556bcd4a3d8a26aCAS |
[9] G. Yu, K. Jie, F. Huang, Chem. Rev. 2015, 115, 7240.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjsVWrsrs%3D&md5=6ccbea20622aad77d2b7511bdde4bd15CAS |
[10] K. Jie, Y. Zhou, Y. Yao, F. Huang, Chem. Soc. Rev. 2015, 44, 3568.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsVChurs%3D&md5=c7662e42e81716c24dc2648286c85c28CAS |
[11] D. S. Guo, Y. Liu, Chem. Soc. Rev. 2012, 41, 5907.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1aqsbrL&md5=544246948b9e533e45a508ef96298136CAS |
[12] M. Y. Wu, T. Y. Ma, Y. L. Su, J. Membr. Sci. 2017, 544, 79.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsVOjs7fL&md5=eecd70b041eaccf8b8865bcf57e590c0CAS |
[13] J. B. Jin, D. Q. Liu, D. D. Zhang, J. Appl. Polym. Sci. 2015, 132, 41620.
| Crossref | GoogleScholarGoogle Scholar |
[14] M. B. M. Y. Ang, Y. L. Ji, S. H. Huang, J. Membr. Sci. 2017, 539, 52.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXovFClt7g%3D&md5=979fdfc862042fd33080e4382e9622d9CAS |
[15] B. W. Zhou, H. Z. Zhang, Z. L. Xu, Desalination 2016, 394, 176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XosVWit7s%3D&md5=614b68aed319126309dbdb8095a52319CAS |
[16] A. Akbari, E. Aliyarizadeh, S. M. M. Rostami, M. Homayoonfal, Desalination 2016, 377, 11.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVyqtb%2FO&md5=22c5df69cdeaa751e8b263440794a2bfCAS |
[17] Q. Wang, G. S. Zhang, Z. S. Li, Desalination 2014, 352, 38.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlagsr%2FP&md5=dc68403ffcb435bcc0d1f1be288dc04eCAS |
[18] T. Ohshima, T. Miyata, T. Uragami, Macromol. Chem. Phys. 2005, 206, 2521.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlCmtA%3D%3D&md5=8d232b5424d471424edad90f16360403CAS |
[19] H. Wu, L. Liu, F. S. Pan, C. L. Hu, Separ. Purif. Tech. 2006, 51, 352.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtValtL3P&md5=594e58ed2087a9f2a03685f1dc3e4e3dCAS |
[20] K. Iwamoto, K. Araki, S. Shinkai, J. Org. Chem. 1991, 56, 4955.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvFWrsrY%3D&md5=b6c16a45219192cc16b7de48a423a7fdCAS |
[21] P. W. Morgan, Encyclopedia of Polymer Science and Technology 2011 (Wiley: Hoboken, NJ).
[22] Z. Asfari, S. Wenger, J. Vicens, Pure Appl. Chem. 1995, 67, 1037.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntFyjtrc%3D&md5=cc3baca7753d6837f708b3a0d40464a3CAS |
[23] G. Yun, C. Yahua, Y. Chaoguo, Chem. Reagents 2005, 27, 111.
[24] Q. M. Wang, S. R. Pan, J. X. Zhang, Carol. J. Pharm. 2003, 34, 490.