Coordination-Initiated Nitroxide-Mediated Polymerization (CI-NMP)
Gérard Audran A , Elena Bagryanskaya B C , Mariya Edeleva B C , Sylvain R. A. Marque A B D , Dmitriy Parkhomenko B , Evgeny Tretyakov B C and Svetlana Zhivetyeva BA Aix Marseille University, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
B N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Lavrentjev Avenue, 9, Novosibirsk 630090, Russia.
C Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia.
D Corresponding author. Email: sylvain.marque@univ-amu.fr
Australian Journal of Chemistry 71(5) 334-340 https://doi.org/10.1071/CH17570
Submitted: 2 November 2017 Accepted: 28 January 2018 Published: 27 February 2018
Abstract
Preparation of materials by nitroxide-mediated polymerization (NMP) is well known nowadays. To increase the possible usefulness of NMP for the production of hybrid materials or polymer-decorated complexes, coordination-initiated NMP (CI-NMP) was developed and investigated here. CI-NMP was exemplified using the instantaneous and spontaneous reaction of alkoxyamines carrying a pyridyl moiety on the alkyl group and the Zn(hfac)2 (hfac: hexafluoroacetylacetonate) complex as a metal centre. NMP of styrene and n-butyl acrylate was carried out with either previously or in situ-prepared complexes. Both approaches afforded NMP of the same quality. The positive influence of metal centre coordination is highlighted by efficient NMP at 90°C.
References
[1] C. H. Chen, J. Shi, Coord. Chem. Rev. 1998, 171, 161.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsFOitbk%3D&md5=cefaacb9df6c7c1371df4e484d7fd7f5CAS |
[2] B. Ma, B. J. Kim, D. A. Poulsen, S. J. Pastine, J. M. Fréchet, Adv. Funct. Mater. 2009, 19, 1024.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFKmtL4%3D&md5=4cdc83edc81116a026ba7144c15a0b04CAS |
[3] D. A. Poulsen, B. J. Kim, B. Ma, C. S. Zonte, J. M. J. Fréchet, Adv. Mater. 2010, 22, 77.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WksrvN&md5=9432cb1f5306c7bc4fbccfae3d80f071CAS |
[4] P.-E. Dufils, N. Chagneux, D. Gigmes, T. Trimaille, S. R. A. Marque, D. Bertin, P. Tordo, Polymer 2007, 48, 5219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlyqt7o%3D&md5=4a925de9fec26399d6890ff4ed817ee7CAS |
[5] F. Dumur, Y. Guillaneuf, A. Guerlin, G. Wantz, D. Bertin, F. Miomandre, G. Clavier, D. Gigmes, C. Mayer, Macromol. Chem. Phys. 2011, 212, 1616.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsV2hsbc%3D&md5=654ae768df8542c7a92dee5e7d597313CAS |
[6] D. H. Solomon, E. Rizzardo, P. Cacioli, Eur. Pat. Appl. 135280 1985; US Patent 4,581,429 1986 [Chem. Abs. 1985, 102, 221335q].
[7] J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, B. Charleux, Prog. Polym. Sci. 2013, 38, 63.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12jt73E&md5=a2736c44b03f0762c03f0fab6e17ae24CAS |
[8] C. J. Hawker, A. W. Bosman, E. Harth, Chem. Rev. 2001, 101, 3661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslaqsrc%3D&md5=2eefcaa0df6f4b1788693167b2500f02CAS |
[9] Nitroxide-Mediated Polymerization: From Fundamentals to Applications in Materials Sciences (Ed. D. Gigmes) 2016, RSC Polymer Chemistry Series 19 (Royal Society of Chemistry: London) and references cited therein.
[10] In situ NMP (see refs [11] and [12]), enhanced spin-capture polymerization (ESCP, see refs [13] and [14]), nitroxide-mediated photopolymerization (NMP2, see refs [15] and [16]), and spin-labelled nitroxide-mediated polymerization (SL-NMP, see ref. [17]).
[11] E. V. Kolyakina, D. F. Grishin, Russ. Chem. Rev. 2009, 78, 535.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GjtLjJ&md5=c7cf12480a9db0a2e13d12715a863dc5CAS |
[12] V. Sciannamea, R. Jérôme, C. Detrembleur, Chem. Rev. 2008, 108, 1104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFehsLo%3D&md5=dc594eefe328f1b116dba22f0c3277b8CAS |
[13] E. H. H. Wong, M. H. Stenzel, T. Junkers, C. Barner-Kowollik, Macromolecules 2010, 43, 3785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1GjsrY%3D&md5=7e8f9831916de6573e6b15ebb46c379bCAS |
[14] E. H. H. Wong, T. Junkers, C. Barner-Kowollik, Polym. Chem. 2011, 2, 1008.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVKht7g%3D&md5=ec00c58503733d87d9f89468441e1562CAS |
[15] X. Pana, M. A. Tasdelenb, J. Launc, T. Junkers, Y. Yagci, K. Matyjaszewski, Prog. Polym. Sci. 2016, 62, 73. and references cited therein.
[16] Y. Guillaneuf, D.-L. Versace, D. Bertin, J. Lalevée, D. Gigmes, J. P. Fouassier, Macromol. Rapid Commun. 2010, 31, 1909.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtleiu77F&md5=0dd45ccabc04fab3429b111e0ec70d2cCAS |
[17] G. Audran, E. G. Bagryanskaya, P. Brémond, M. V. Edeleva, S. R. A. Marque, D. A. Parkhomenko, O. Y. Rogozhnikova, V. M. Tormyshev, E. V. Tretyakov, D. V. Trukhin, S. I. Zhivetyeva, Polym. Chem. 2016, 7, 6490.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1KrtrbJ&md5=563654aed7456780b4c92d075a2d08a4CAS |
[18] G. Audran, E. Bagryanskaya, I. Bagryanskaya, P. Brémond, M. Edeleva, S. R. A. Marque, D. Parkhomenko, E. Tretyakov, S. Zhivetyeva, Inorg. Chem. Front. 2016, 3, 1464.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsF2mtbfO&md5=ba2a71c8f4e509b13c57e31c6bfc4381CAS |
[19] G. Audran, E. Bagryanskaya, I. Bagryanskaya, M. Edeleva, S. R. A. Marque, D. Parkhomenko, E. Tretyakov, S. Zhivetyeva, ChemistrySelect 2017, 2, 3584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXmvVChsrw%3D&md5=9954ce33b83048fa1288e6984c7d561eCAS |
[20] In situ preparation of a complex by merely mixing the ZnII cation and alkoxyamine is a valuable approach both for the grafting-from procedure and easy initiation of conventional NMP.
[21] The absence of two signals in 1H NMR (one for free alkoxyamine RS/SR-3 and one for complex RS/SR-5) may be attributed to the exchange between the free alkoxyamine and the complex. Nonetheless, this exchange cannot account for the kinetics observations.
[22] P. Brémond, S. R. A. Marque, Chem. Commun. 2011, 4291.
| Crossref | GoogleScholarGoogle Scholar |
[23] G. Audran, P. Brémond, M. B. B. Ibanou, S. R. A. Marque, V. Roubaud, D. Siri, Org. Biomol. Chem. 2013, 11, 7738.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Kjsb%2FJ&md5=80a85f2db18ccf2e5fbbe2de03c33cfdCAS |
[24] G. Audran, P. Brémond, S. R. A. Marque, G. Obame, Polym. Chem. 2012, 3, 2901.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yksrjP&md5=55f9cfa7400bfdbf143f643f8c70b61cCAS |
[25] F. Chauvin, P.-E. Dufils, D. Gigmes, Y. Guillaneuf, S. R. A. Marque, P. Tordo, D. Bertin, Macromolecules 2006, 39, 5238.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslGrsb4%3D&md5=f31386bd9e48aa10de62003bb3279478CAS |
[26] At high temperature, complex RS/SR-6 decomposes into RS/SR-5 and Zn(hfac)2.
[27] Four-fold higher kd for RS/SR-5′ than RS/SR-3.
[28] The same trends are expected for the RR/SS-2 diastereoisomer because it shows the same Ea as that of the RS/SR-2 diastereoisomer.
[29] D. Bertin, F. Chauvin, S. Marque, P. Tordo, Macromolecules 2002, 35, 3790.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFKrur0%3D&md5=561595d47895481a7750e3907e75ceecCAS |
[30] The authors are aware that similar approach has been develop for RAFT: M. Benaglia, J. Chiefari, Y. K. Chong, G. Moad, E. Rizzardo, S. H. Thang, J. Am. Chem. Soc. 2009, 131, 6914. However, the authors want to stress that the activation processes and mechanisms of polymerization are different between RAFT and NMP, such as many results reported for RAFT are not observed for NMP, and conversely.
[31] CI-NMP is expected to work with any metal centre. However, a possible antagonistic or synergistic role must be kept in mind.