1,3-Dipolar Cycloaddition of a Nitronyl Nitroxide-Substituted Alkyne to Heteroaromatic N-Imines
Vasiliy Romanov A B , Aleksey Vorob’ev A B , Irina Bagryanskaya A B , Dmitriy Parkhomenko A and Evgeny Tretyakov A B CA N. N. Vorozhtsov Institute of Organic Chemistry, 9 Ac. Lavrentiev Avenue, Novosibirsk 630090, Russia.
B National Research University – Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia.
C Corresponding author. Email: tretyakov@nioch.nsc.ru
Australian Journal of Chemistry 70(12) 1317-1320 https://doi.org/10.1071/CH17476
Submitted: 18 August 2017 Accepted: 6 September 2017 Published: 21 September 2017
Abstract
1,3-Dipolar cycloaddition of the triple bond in an ethynyl-substituted nitronyl nitroxide to heteroaromatic N-imines is described. The reaction opens a pathway to polyfunctional nitronyl nitroxides with pyrazolo[1,5-a]pyridine or related substituents. According to X-ray diffraction analysis, dihedral angles between the plane of the paramagnetic moiety and heteroaromatic cycle do not exceed 24°. Reactions between Cu(hfac)2 (hfac = hexafluoroacetylacetonate ion) and a pyrazolo[1,5-a]pyridine-substituted radical produced a polymer chain complex with a ‘head-to-tail’ motif resembling that in breathing crystals.
References
[1] (a) Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds (Ed. R. G. Hicks) 2010 (John Wiley and Sons: Chichester, UK).(b) M. Baumgarten, in EPR of Free Radicals in Solids II. Progress in Theoretical Chemistry and Physics (Eds A. Lund, M. Shiotani) 2012, Vol. 25, Ch. 12, pp. 205–244 (Springer: Dordrecht).
(c) Chemical Science of π-Electron Systems (Eds T. Akasaka, A. Osuka, S. Fukuzumi, H. Kandori, Y. Aso) 2015 (Springer: Tokyo).
[2] (a) P. Rey, V. I. Ovcharenko, in Magnetism: Molecules to Materials IV (Eds J. S. Miller, M. Drillon) 2003, pp. 41–63 (Wiley–VCH: Weinheim).
(b) A. Caneschi, D. Gatteschi, P. Rey, Prog. Inorg. Chem. 1991, 39, 331.
(c) V. I. Ovcharenko, K. Yu. Maryunina, S. V. Fokin, E. V. Tretyakov, G. V. Romanenko, V. N. Ikorskii, Russ. Chem. Bull. 2004, 53, 2406.
| Crossref | GoogleScholarGoogle Scholar |
(d) O. Kahn, Molecular Magnetism 1993 (Wiley VCH: New York, NY).
[3] (a) E. F. Ullman, J. H. Osiecki, D. G. B. Boocock, R. Darcy, J. Am. Chem. Soc. 1972, 94, 7049.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xls1eksLc%3D&md5=68826cf19be11bf9ef21ec804f2b81c8CAS |
(b) J. Becher, E. F. Ullman, U.S. Patent 3,927,019 1975.
[4] E. V. Tretyakov, V. I. Ovcharenko, Russ. Chem. Rev. 2009, 78, 971.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFGjtLw%3D&md5=1a94056577657efc882263788ee1969aCAS |
[5] (a) I. A. Grigor’ev, V. F. Starichenko, I. A. Kirilyuk, L. B. Volodarskii, Russ. Chem. Bull. 1989, 38, 587.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. A. Voinov, L. B. Volodarsky, Russ. Chem. Bull. 1997, 46, 126.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) E. Tretyakov, S. Fokin, G. Romanenko, V. Ikorskii, V. Ovcharenko, Polyhedron 2007, 26, 1917.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVOru74%3D&md5=43df8bdaec9443ed1025fda42ae09089CAS |
(b) M. Kadirov, E. Tretyakov, Yu. Budnikova, M. Valitov, K. Holin, T. Gryaznova, V. Ovcharenko, O. Sinyashin, J. Electroanal. Chem. 2008, 624, 69.
| Crossref | GoogleScholarGoogle Scholar |
[7] R. Weiss, N. Kraut, F. Hampel, J. Organomet. Chem. 2001, 473, 617.
[8] (a) W. Kaszub, A. Marino, M. Lorenc, E. Collet, E. G. Bagryanskaya, E. V. Tretyakov, V. I. Ovcharenko, M. V. Fedin, Angew. Chem. Int. Ed. 2014, 53, 10636.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlylsrvN&md5=391c69e217c9c6ff2d580c684451624aCAS |
(b) I. Yu. Barskaya, E. V. Tretyakov, R. Z. Sagdeev, V. I. Ovcharenko, E. G. Bagryanskaya, K. Yu. Maryunina, T. Takui, K. Sato, M. V. Fedin, J. Am. Chem. Soc. 2014, 136, 10132.
| Crossref | GoogleScholarGoogle Scholar |
(c) I. Y. Drozdyuk, S. E. Tolstikov, E. V. Tretyakov, S. L. Veber, V. I. Ovcharenko, R. Z. Sagdeev, E. G. Bagryanskaya, M. V. Fedin, J. Phys. Chem. A 2013, 117, 6483.
| Crossref | GoogleScholarGoogle Scholar |
(d) I. Y. Barskaya, S. Veber, S. Fokin, E. Tretyakov, E. Bagryanskaya, V. Ovcharenko, M. Fedin, Dalton Trans. 2015, 20883.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) E. V. Tretyakov, G. V. Romanenko, S. L. Veber, M. V. Fedin, A. V. Polushkin, A. O. Tkacheva, V. I. Ovcharenko, Aust. J. Chem. 2015, 68, 970.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpslGhtbs%3D&md5=a31e860536081650809e6caa6cc10966CAS |
(b) E. Tretyakov, S. Tolstikov, A. Suvorova, A. Polushkin, G. Romanenko, A. Bogomyakov, S. Veber, M. Fedin, D. Stass, E. Reijerse, W. Lubitz, E. Zueva, V. Ovcharenko, Inorg. Chem. 2012, 51, 9385.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) V. I. Ovcharenko, S. V. Fokin, G. V. Romanenko, Yu. G. Shvedenkov, V. N. Ikorskii, E. V. Tretyakov, S. F. Vasilevsky, J. Struct. Chem. 2002, 43, 153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVChs7g%3D&md5=de4e50b306dc5458c58bef15707463f7CAS |
(b) V. I. Ovcharenko, K. Yu. Maryunina, S. V. Fokin, E. V. Tretyakov, G. V. Romanenko, V. N. Ikorskii, Russ. Chem. Bull. 2004, 53, 2406.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. Tretyakov, S. Fokin, G. Romanenko, V. Ikorskii, S. Vasilevsky, V. Ovcharenko, Inorg. Chem. 2006, 45, 3671.
| Crossref | GoogleScholarGoogle Scholar |
(d) V. I. Ovcharenko, S. V. Fokin, E. T. Kostina, G. V. Romanenko, A. S. Bogomyakov, E. V. Tretyakov, Inorg. Chem. 2012, 51, 12188.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) E. Tretyakov, G. Romanenko, A. Podoplelov, V. Ovcharenko, Eur. J. Org. Chem. 2006, 2695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Wrs7k%3D&md5=e54aae014385c2cd988b8d07e975a69dCAS |
(b) E. Tretyakov, S. Tolstikov, A. Mareev, A. Medvedeva, G. Romanenko, D. Strass, A. Bogomyakov, V. Ovcharenko, Eur. J. Org. Chem. 2009, 2548.
| Crossref | GoogleScholarGoogle Scholar |
[12] Y. Tamura, J. Minamikawa, M. Ikeda, Synthesis 1977, 1.
[13] F. H. Allen, O. Kenard, D. G. Watson, L. Bramer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2 1987, S1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmt1ylsg%3D%3D&md5=440a96106635b89dff74431e901e8eeaCAS |
[14] Selected bond lengths (Å) in 4a: O1–N1 1.280(2), O2–N2 1.283(2), N1–C1 1.349(3), N1–C2 1.496(3), N2–C1 1.342(3), N2–C3 1.500(3), N3–N4 1.366(3), N3–C14 1.327(3), N4–C9 1.384(3), N4–C13 1.368(3), C1–C8 1.436(3); in 4b (average for two independent molecules): O1–N1 1.277(4), O2–N2 1.271(4), O3–C16 1.355(5), N1–C1 1.322(5), N1–C2 1.499(5), N2–C1 1.343(5), N2–C3 1.479(5), N3–N4 1.363(5), N3–C18 1.324(5), N4–C9 1.376(4), N4–C17 1.388(5), C1–C8 1.449(5).
[15] Selected bond lengths (Å): O1–N1 1.271(7), O2–N2 1.292(6), N1–C1 1.352(6), N1–C2 1.511(7), N2–C1 1.349(7), N2–C3 1.491(6), N3–N4 1.339(6), N3–C14 1.341(7), N4–C9 1.371(6), N4–C13 1.386(6), C1–C8 1.434(6), Cu1–O3 1.954(4), Cu1–O4 1.949(4), Cu1–O5 1.951(4), Cu1–O6 1.962(4), Cu1–N3 2.375(5), Cu1–O2A 2.452(4) Å.
[16] (a) Y. Tamura, M. Ikeda, Adv. Heterocycl. Chem. 1981, 29, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtVCis70%3D&md5=1d6815fd94c1d63d1c5429749c567802CAS |
(b) J. D. Kendall, Curr. Org. Chem. 2011, 15, 2481.
| Crossref | GoogleScholarGoogle Scholar |