Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

New Organic Acidic Cyclohexaphosphate: Synthesis, Crystal Structure, Physicochemical Study, and In Vitro Biochemical Investigation

Ramzi Fezai A C , Lamia Khedhiri A , Hanene Hemissi A , Ali Mezni B and Mohamed Rzaigui A
+ Author Affiliations
- Author Affiliations

A Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Université de Carthage, Tunisie.

B Laboratoire des Substances Bio-Actives, Faculté des Sciences de Bizerte, 7021 Zarzouna, Université de Carthage, Tunisie.

C Corresponding author. Email: fezai_ramzi@yahoo.fr

Australian Journal of Chemistry 71(1) 14-23 https://doi.org/10.1071/CH17248
Submitted: 7 May 2017  Accepted: 16 July 2017   Published: 14 August 2017

Abstract

A novel organic cyclohexaphosphate [o-(OCH3)C6H4NH3]4H2P6O18·4H2O (1) has been synthesised by the slow evaporation method. An X-ray diffraction study on a single crystal was used to identify this compound. It shows that this acidic cyclohexaphosphate crystallizes in the monoclinic space group P21/n with V 2215.1(1) Å3 and Z 2. Its crystal structure is a packing of alternating inorganic and organic layers parallel to the (a, c) planes. Crystal symmetry is confirmed by 31P magic angle spinning-NMR spectroscopy. Furthermore, spectroscopic (IR, UV-visible) and thermal (thermogravimetric/differential thermal analysis and differential scanning calorimetry) characteristics are given. The excitation and emission spectra were recorded showing blue photoluminescence. The alternating current conductivity and dielectric measurements were carried out in the temperature range 333–403 K and the frequency range from 5 Hz to 13 MHz. The impedance data were well fitted to an equivalent electrical circuit. The temperature dependence of the direct current conductivity follows the Arrhenius law and the frequency dependence of σAC(ω,T) follows Jonscher’s universal law. Antioxidant properties of this compound were studied, in vitro, at various concentrations with different tests; 1,1-diphenyl-2-picrylhydrazyl, hydroxyl scavenging ability, ferric reducing power, and ferrous ion chelating ability, using ascorbic acid as control.


References

[1]  J. L. Knutson, J. D. Martin, D. B. Mitzi, Inorg. Chem. 2005, 44, 4699.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVSqu78%3D&md5=99a96b36f974733499d919da3222123aCAS |

[2]  K. Chondroudis, D. B. Mitzi, Chem. Mater. 1999, 11, 3028.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVSmu7s%3D&md5=5d4b1e64ca2324aefc7db368434bf699CAS |

[3]  G. Centi, Catal. Today 1993, 16, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  G. A. Ozin, Adv. Mater. 1992, 4, 612.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitF2qtb8%3D&md5=abbb99624562600b96524b63d4268055CAS |

[5]  O. Terasaki, K. Yamazaki, J. M. Thomas, T. Ohsuna, D. Watanabe, J. V. Sanders, J. C. Barry, Nature 1987, 330, 58.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsVWjsA%3D%3D&md5=2001be82e0c5679a66f45c7a9caba98dCAS |

[6]  G. Sankar, P. A. Wright, S. Natarajan, J. M. Thomas, G. N. Greaves, A. J. Dent, B. R. Dobson, C. A. Ramsdale, R. H. Jones, J. Phys. Chem. 1993, 97, 9550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXls1KitbY%3D&md5=7f40c96a9f5557ca6ac648d1723ae73dCAS |

[7]  J. H. Li, S. D. Han, J. Pan, Z. Z. Xue, G. M. Wang, Z. H. Wang, Z. Z. Bao, CrystEngComm 2017, 19, 1160.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  G. M. Wang, J. H. Li, L. Wei, S. D. Han, X. M. Zhao, Z. Z. Bao, CrystEngComm 2015, 17, 8414.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1WjsrzL&md5=cbffebfacbda943c8277dfe9621f62b9CAS |

[9]  G. M. Wang, Z. Ding, J. Li, X. Lv, X. Zhang, X. Zhao, Z. Wang, Y. Wang, J. Lin, CrystEngComm 2014, 16, 3296.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFGqsrs%3D&md5=9238efcb9ece5c60443649941eb7f6f6CAS |

[10]  G. M. Wang, J. H. Li, J. Pan, Z. Z. Xue, L. Wei, S. D. Han, Z. Z. Bao, Z. H. Wang, Dalton Trans. 2017, 46, 808.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVKku7%2FI&md5=020c026ad0ca009e09048cc48bf67b24CAS |

[11]  G. M. Wang, J. Li, X. Zhang, P. Wang, B. B. Pang, Z. Wang, Y. Wang, J. Linb, C. Pan, Dalton Trans. 2013, 42, 13084.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlSitL%2FF&md5=cdf322b52b2f1ec2a39d08be0da56e7bCAS |

[12]  G. M. Wang, J. H. Li, L. Wei, X. Zhang, Z. Z. Bao, RSC Adv. 2015, 5, 74811.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVWmurfL&md5=1a050af001673584c29bc6d544767c4cCAS |

[13]  H. Marouani, M. Rzaigui, Acta Crystallogr. Sect. E 2010, 66, o233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1alug%3D%3D&md5=785f62a49c91ad7ff724ddbb50c45b21CAS |

[14]  A. Hamdi, L. Khederi, M. Rzaigui, Acta Crystallogr. Sect. E 2014, 70, o342.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjsFGitbc%3D&md5=988ffa5ed4a0d8c0cc120a9bdf5bc2d0CAS |

[15]  H. Nefzi, F. Sediri, H. Hamzaoui, N. Gharbi, Mater. Res. Bull. 2013, 48, 1978.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjt1WqtLs%3D&md5=5cde75777f288898c0e677ad36a618afCAS |

[16]  M. Alkan, H. Yuksek, O. Gursoy-Kol, M. Calapoglu, Molecules 2008, 13, 107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFCntL0%3D&md5=dfcc2419bc7c97c5ad7f751ac1b9a7a7CAS |

[17]  A. Al-Amiery, A. A. H. Kadhum, A. B. Mohamad, Bioinorg. Chem. Appl. 2012, 2012, 795812.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  R. A. Larson, Arch. Insect Biochem. Physiol. 1995, 29, 175.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFyhsbY%3D&md5=059a5fcf85da2b6e9baca13af5aa5669CAS |

[19]  W. A. Pryor, Am. J. Clin. Nutr. 1991, 53, 391.

[20]  U. Shülke, R. Kayser, Z. Anorg. Allg. Chem. 1985, 531, 167.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  R. Bel Haj Salah, L. Khedhiri, C. Ben Nasr, M. Rzaigui, F. Lefebvre, Phosphorus Sulfur Silicon Relat. Elem. 2010, 185, 595.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  E. H. Soumhi, T. Jouini, Acta Crystallogr. Sect. C 1996, 52, 2802.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  K. Larafa, A. Mahjoub, M. Rzaigui, Eur. J. Solid State Inorg. Chem. 1997, 34, 481.
         | 1:CAS:528:DyaK2sXnt1ems70%3D&md5=6fd96b524ef53cef4a7f1b042a687a79CAS |

[24]  H. Marouani, M. Rzaigui, S. S. Al-Deyab, Acta Crystallogr. Sect. E 2010, 66, o702.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislajsr0%3D&md5=bbb2633e2f9a5224b82e188fad4be376CAS |

[25]  R. Bel Haj Salah, L. Khedhiri, M. Rzaigui, X-ray Struct. Anal. Online 2010, 26, 45.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  H. Marouani, S. S. Al-Deyab, M. Rzaigui, ISRN Mater. Sci. 2011, 2011, 457924.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  M. O. Abdellahi, F. Ben Amor, A. Driss, T. Jouini, Acta Crystallogr. Sect. C 1998, 54, 813.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  I. D. Brown, Acta Crystallogr. Sect. A 1976, 32, 24.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  A. Gharbi, A. Jouini, A. Durif, J. Solid State Chem. 1995, 114, 42.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivF2hur8%3D&md5=53d4dae70f8f92a6aec579e26258410bCAS |

[30]  M. Charfi, A. Jouini, J. Solid State Chem. 1996, 127, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitFersQ%3D%3D&md5=1922eea47a7933033c5f3abdbe49ee64CAS |

[31]  H. Marouani, M. Rzaigui, M. Bagieu-Beucher, Eur. J. Solid State Inorg. Chem. 1998, 35, 459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmslWmu74%3D&md5=30b5b6d0d9ee3da2d4368ebb2c672cb8CAS |

[32]  H. Marouani, M. Rzaigui, Solid State Sci. 1999, 1, 395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFOrtrk%3D&md5=8454f6edf19efc8ce8232dc6bc61d0a3CAS |

[33]  A. Maalaoui, A. Hajsalem, N. R. Ramond, S. Akriche, J. Cluster Sci. 2014, 25, 1525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKku7rF&md5=47356ad6ecd731b82cb3492f35bfeb33CAS |

[34]  P. Nagapandiselvi, C. Baby, R. Gopalakrishnan, Opt. Mater. 2015, 47, 398.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVeqsr3P&md5=9a42b10bc2689f49b69ea1d59b62a6aaCAS |

[35]  J. Tauc, Mater. Res. Bull. 1968, 3, 37.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXktVKlsb8%3D&md5=d4a8d5bc176f15ddbdead426c1464d8bCAS |

[36]  N. Siraj, F. Hasan, S. Das, L. W. Kiruri, K. E. S. Gall, G. A. Baker, I. M. Warner, J. Phys. Chem. C 2014, 118, 2312.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlslCluw%3D%3D&md5=f8dd612c52819a13d53dd860b92942e8CAS |

[37]  O. Amri, S. Abid, M. Rzaigui, Phosphorus, Sulfur Silicon Relat. Elem. 2008, 183, 1984.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVKmsr8%3D&md5=8f15b6bb700ef2c4a73162492cdc3c1eCAS |

[38]  C. Ben Nasr, M. Rzaigui, Mater. Res. Bull. 1999, 34, 557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlOkt7g%3D&md5=839578a10a015ce0067d52c1690bfe10CAS |

[39]  H. Marouani, M. Rzaigui, S. S. Al-Dheyab, Phosphorus, Sulfur Silicon Relat. Elem. 2011, 186, 255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1eitbY%3D&md5=cef39ae9498ec772471a04860f29d5d5CAS |

[40]  B. Louati, M. Gargouri, K. Guidara, T. Mhiri, J. Phys. Chem. Solids 2005, 66, 762.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1yntbg%3D&md5=1874f9c8ef9b3388ec55620ea7b80574CAS |

[41]  A. Braca, N. D. Tommasi, L. D. Bari, C. Pizza, M. Politi, I. Morelli, J. Nat. Prod. 2001, 64, 892.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFers70%3D&md5=50fa2dde1f39262d6c7af1ea24e2bdc8CAS |

[42]  B. Halliwell, J. M. C. Gutteridge, O. I. Aruoma, Anal. Biochem. 1987, 165, 215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltFajtL0%3D&md5=1dda87403c5cd622629a82639aecf669CAS |

[43]  R. Pulido, L. Bravo, F. Saura-Calixto, J. Agric. Food Chem. 2000, 48, 3396.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvFOhtLc%3D&md5=d0f6fe788a7b7ee530830fec2a413b1bCAS |

[44]  N. Singh, P. S. Rajini, Food Chem. 2004, 85, 611.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFCmsQ%3D%3D&md5=310da93d5565930b9eaddec7e2db50b0CAS |

[45]  R. Fezai, A. Mezni, M. Rzaigui, J. Chem. Biol. Phys. Sci. 2016, 6, 376.
         | 1:CAS:528:DC%2BC28XitV2qsL%2FN&md5=954173c448eeddd2b1c6d85380752faaCAS |

[46]  R. Fezai, A. Mezni, M. Kahlaoui, M. Rzaigui, J. Mol. Struct. 2016, 1119, 54.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnslWrs74%3D&md5=1aa66c262963a768b518884352dc1691CAS |