Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

New Insights into the Origin of the cis-Configuration Preferences in 1,2-Dihaloethenes: The Importance of the Bonding Orbital Deviations

Leila Tavanaei A and Davood Nori-Shargh A B
+ Author Affiliations
- Author Affiliations

A Chemistry Department, Science Faculty, Arak Branch, Islamic Azad University, Arak 38361-1-9131, Iran.

B Corresponding author. Email: D-norishargh@iau-arak.ac.ir

Australian Journal of Chemistry 71(1) 1-13 https://doi.org/10.1071/CH17219
Submitted: 22 April 2017  Accepted: 11 July 2017   Published: 15 August 2017

Abstract

The origin of the preferences for the cis-configurations in 1,2-difluoroethene (1), 1,2-dichloroethene (2), and 1,2-dibromoethene (3) were explored by means of the G3MP2, LC-ωPBE and CCSD(T) methods with the 6–311+G** basis set on all atoms, and natural bond orbital interpretation. On the basis of the results obtained, the cis-configurations preferences decrease in going from compound 1 to compound 3. Effectively, the deletions of the hyperconjugative interactions from the Fock matrices of the cis- and trans-configurations of compound 1 lead to the increase of the trans-conformation stability (by ~6.11 kcal mol−1) compared with its corresponding cis-conformation. However, the Pauli exchange-type repulsion difference between the cis- and trans-configurations of compound 1 is in favour of the trans-configuration (by ~6.25 kcal mol−1), revealing that the stabilization energies associated with the hyperconjugative interactions do not compensate the destabilizations associated with the exchange component and dipole-dipole interactions. Importantly, the C=C bond paths in the cis-configuration of compound 1 are bent in essentially the same direction (towards the C–F bonds), leading to an increased overlap and a stronger C–C bond, whereas the C–C bond paths in the trans-configuration are bent in opposite directions. Accordingly, the co-operative stabilizations associated with the bending of the C=C bond paths (towards the C–F bonds) and total hyperconjugative generalized anomeric effect overcome the destabilizations associated with the exchange component and dipole–dipole interactions, leading to the preference of the cis-configuration in compound 1. The deletions of all the donor–acceptor electronic interactions from the Fock matrices of the cis- and trans-configurations of compounds 2 and 3 lead to the increase of the trans-conformation stabilities compared with their corresponding cis-conformations, revealing the determining impacts of the hyperconjugative interactions on the configurational preferences in compounds 2 and 3.


References

[1]  M. I. Davis, H. A. Kappler, J. Phys. Chem. 1964, 68, 2005.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXkslegtLY%3D&md5=fdec758edda229add0fdc34247dafe17CAS |

[2]  L. D. Hawton, G. P. Semeluk, Can. J. Chem. 1966, 44, 2143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28Xkslalsb4%3D&md5=63eeb1ecc974934b5a2b49f2664012feCAS |

[3]  J. M. Jeffers, W. Shaub, J. Am. Chem. Soc. 1969, 91, 7706.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkvVSguw%3D%3D&md5=2a6581b1489be17a4652c9af6f51a2aeCAS |

[4]  N. C. Craig, L. G. Piper, V. L. Wheeler, J. Phys. Chem. 1971, 75, 1453.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXktF2mtL0%3D&md5=e66a02e895c907e7f1f8284ed45d0747CAS |

[5]  J. L. Carlos, R. R. Kari, S. H. Bauer, J. Chem. Soc., Faraday Trans. II 1974, 70, 177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXhsV2kur0%3D&md5=7cacc3eccf44418c46c5b8541e2b17e8CAS |

[6]  A. Spelbos, P. A. G. Huisman, F. C. Mijlhoff, G. H. Renes, J. Mol. Struct. 1978, 44, 159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXksF2gsb8%3D&md5=a7bfe14cfdcbfcf86bffde1ca7133840CAS |

[7]  L. Schäfer, J. D. Ewbank, K. Siam, D. W. Paul, D. L. Monts, J. Mol. Struct. 1986, 145, 135.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  N. C. Craig, D. W. Brandon, S. C. Stone, J. Phys. Chem. 1992, 96, 1598.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtVGgtr0%3D&md5=371cdceee1d3527196757ec977445206CAS |

[9]  N. C. Craig, P. Groner, D. C. McKean, M. J. Tubergen, Int. J. Quantum Chem. 2003, 95, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVagsro%3D&md5=0918b7c5d33995cf980fa2f1c398a69fCAS |

[10]  W. Shi, V. N. Staroverov, R. H. Lipson, J. Chem. Phys. 2009, 131, 154304.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  R. M. Noyes, R. G. Dickinson, J. Am. Chem. Soc. 1943, 65, 1427.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH3sXjtV2rsQ%3D%3D&md5=2435242f324319a2cb3215ece9c503cfCAS |

[12]  E. J. M. Van Schaick, F. C. Mijlhoff, G. Renes, H. J. Geise, J. Mol. Struct. 1974, 21, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlt1yjurg%3D&md5=43061c39d73f618bc2f106ff35243901CAS |

[13]  V. W. Laurie, D. T. Pence, J. Chem. Phys. 1963, 38, 2693.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXktVWjsb8%3D&md5=68072578f4f3d717f62a8dcdce9d4462CAS |

[14]  C. L. Perrin, K. B. Armstrong, M. A. Fabian, J. Am. Chem. Soc. 1994, 116, 715.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhs1ejs7k%3D&md5=c89cdbd9895868d08f12190be7ee562aCAS |

[15]  C. L. Perrin, D. B. Young, Tetrahedron Lett. 1995, 36, 7185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosVWqt74%3D&md5=307bfe2b90cb02b6c9ffb6e0af130ba9CAS |

[16]  T. Yamamoto, D. Kaneno, S. Tomoda, Bull. Chem. Soc. Jpn. 2008, 81, 1415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOjtbvM&md5=941324c4465348a75e495adf4568950eCAS |

[17]  J. Kirby, The Anomeric Effect and Related Stereoelectronic Effects at Oxygen 1983 (Springer Verlag: New York, NY).

[18]  P. Deslongchamps, Stereoelectronic Effects in Organic Chemistry 1983 (Wiley: New York, NY).

[19]  E. Juaristi, G. Cuevas, The Anomeric Effect 1995 (CRC Press Inc.: Boca Raton, FL).

[20]  C. J. Cramer, J. Org. Chem. 1992, 57, 7034.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsVKqtb0%3D&md5=2d9034e6558d957037f092a622f604ccCAS |

[21]  A. Lesarri, A. Vega-Toribio, R. D. Suenram, D. J. Brugh, D. Nori-Shargh, J. E. Boggs, J.-U. Grabow, Phys. Chem. Chem. Phys. 2011, 13, 6610.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFKktLw%3D&md5=3caefb9f4870369fb5923805529f48b4CAS |

[22]  A. Vila, R. A. Mosquera, J. Comput. Chem. 2007, 28, 1516.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslSgs7k%3D&md5=07d399e0637719f6ce0a4eeb202e80e0CAS |

[23]  P. A. Petillo, L. E. Lerner, in The Anomeric Effect and Associated Stereoelectronic Effects, ACS Symposium Series No. 539 (Ed. G. R. J. Thacher) 1993, pp. 156–175 (American Chemical Society: Washington, DC) .

[24]  E. Juaristi, R. Notario, J. Org. Chem. 2016, 81, 1192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XptlGgsQ%3D%3D&md5=3fd9e955326a9d312e8c22472d3016beCAS |

[25]  J.-P. Praly, R. U. Lemieux, Can. J. Chem. 1987, 65, 213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitFWhtQ%3D%3D&md5=453572be4d90a885c1de69ac973bc70fCAS |

[26]  D. Nori-Shargh, S. N. Mousavi, H. Kayi, J. Mol. Model. 2014, 20, 2249.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  M. P. Freitas, Org. Biomol. Chem. 2013, 11, 2885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltl2is7o%3D&md5=a09d3bc94bb358b63a51ed50cf95cf6cCAS |

[28]  G. F. Bauerfeldt, T. M. Cardozo, M. S. Pereira, C. O. da Silva, Org. Biomol. Chem. 2013, 11, 299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSksbvE&md5=f574d4d93d374e36cc619a73fbc44133CAS |

[29]  N. Hasanzadeh, D. Nori-Shargh, M. Farzipour, B. Ahmadi, Org. Biomol. Chem. 2015, 13, 6965.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotVCit74%3D&md5=bf6584afc50ad943ca072e66c2836ed3CAS |

[30]  D. Nori-Shargh, S. N. Mousavi, R. Tale, H. Yahyaei, Struct. Chem. 2016, 27, 1753.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFamtL3I&md5=e70aa92d061ce5056291840414f4c1d3CAS |

[31]  A. Behrouz, D. Nori-Shargh, Aust. J. Chem. 2017, 70, 61.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXmslSisQ%3D%3D&md5=768db2a55d36b7ba735b02ef540e1b8bCAS |

[32]  P. Ghanbarpour, D. Nori-Shargh, RSC Adv. 2016, 6, 46406.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xnt1Onsr4%3D&md5=a09aed64ce72ff79f9c4d22e163b3b18CAS |

[33]  S. A. Glover, A. A. Rosser, R. M. Spence, Aust. J. Chem. 2014, 67, 1344.
         | 1:CAS:528:DC%2BC2cXhsVyntrbP&md5=d2787b2a1d88fda580c3146eaf9457e2CAS |

[34]  L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, J. A. Pople, J. Chem. Phys. 1999, 110, 4703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlektb4%3D&md5=c963fe5ed0fd4d58cc3756e2e600dbbcCAS |

[35]  J. Cížek, in Advances in Chemical Physics (Ed. P. C. Hariharan) 1969, Vol. 14, pp. 35–89 (Wiley Interscience: New York, NY).

[36]  G. D. Purvis, R. J. Bartlett, J. Chem. Phys. 1982, 76, 1910.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtFSgtLY%3D&md5=5e91ce0db3fcfa5e4a871b8d4b084671CAS |

[37]  G. E. Scuseria, C. L. Janssen, H. F. Schaefer, J. Chem. Phys. 1988, 89, 7382.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXht1WlsLk%3D&md5=15f6fbc9340b56df1cee3f234b9b01d3CAS |

[38]  G. E. Scuseria, H. F. Schaefer, J. Chem. Phys. 1989, 90, 3700.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktFalsbg%3D&md5=ef2b692e154994bf254ed7a10cce5b8aCAS |

[39]  M. Urban, J. Noga, S. J. Cole, R. J. Bartlett, J. Chem. Phys. 1985, 83, 4041.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtVSqu70%3D&md5=5a771d34a71d21963897f6d453e3c37eCAS |

[40]  E. Weintraub, T. M. Henderson, G. E. Scuseria, J. Chem. Theory Comput. 2009, 5, 754.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVKktbg%3D&md5=9a9441fd4a00e2147cc8a724afafc552CAS |

[41]  O. A. Vydrov, G. E. Scuseria, J. Chem. Phys. 2006, 125, 234109.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  D. Cremer, in Encyclopedia of Computational Chemistry (Eds P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollma, H. F. Schaefer III, P. R. Schreiner) 1998, pp. 1706–1735 (John Wiley: Chichester).

[43]  R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXpvFyitA%3D%3D&md5=caea7d3979dfad320c358509e9cbca51CAS |

[44]  A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksFCnu7c%3D&md5=cfa4faa9ecbf204e77864e04796fdd5dCAS |

[45]  J.-P. Blaudeau, M. P. McGrath, L. A. Curtiss, L. Radom, J. Chem. Phys. 1997, 107, 5016.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVWrtbo%3D&md5=3d36cf43a885a48ff7afbc42fdca264cCAS |

[46]  E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, NBO Version 5.G 2004 (Theoretical Chemistry Institute, University of Wisconsin: Madison, WI).

[47]  M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Su, S. J. Nguyen, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsFaqtQ%3D%3D&md5=ff65c697d50c3b4b4c3b3e89efa32904CAS |

[48]  M. S. Gordon, M. W. Schmidt, in Theory and Applications of Computational Chemistry: The First 40 Years (Eds C. E. Dykstra, G. Frenking, K. S. Lim, G. E. Scusaria) 2005, pp. 1167–1189 (Elsevier: Amsterdam).

[49]  O. Vydrov, G. Scuseria, J. Perdew, J. Chem. Phys. 2007, 126, 154109.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  A. J. Cohen, P. Mori-Sánchez, W. Yang, Sciences (New York) 2008, 321, 792.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlyhsrg%3D&md5=6f0e56cab0a11b76eca96fee6cf8c06cCAS |

[51]  S. Nishihara, S. Yamanaka, K. Kusakabe, K. Nakata, Y. Yonezawa, H. Nakamura, K. Yamaguchi, J. Phys. Condens. Matter 2009, 21, 064227.
         | 1:STN:280:DC%2BC3MnksVKrsg%3D%3D&md5=b25406cb78ec226d5a5ce1379d621da5CAS |

[52]  N. D. Epiotis, R. L. Yates, R. J. Larson, C. R. Kirmayer, F. Bernardi, J. Am. Chem. Soc. 1977, 99, 8379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXitF2rsA%3D%3D&md5=02e8623cee74476853af77ceccb27f7dCAS |

[53]  M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry 1969 (McGraw-Hill: New York, NY).

[54]  W. T. Borden, Modern Molecular Orbital Theory for Organic Chemists 1975 (Prentice-Hall: Englewood Cliffs, NJ).

[55]  M. Wolfsberg, L. Helmholz, J. Chem. Phys. 1952, 20, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXhtFCgtw%3D%3D&md5=08ff459275c9db064be9d24b8c865c3cCAS |

[56]  D. D. Radtke, R. F. Fenske, J. Am. Chem. Soc. 1967, 89, 2292.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXks1Okurg%3D&md5=3a2444c55b8b7d93793a11a5c02a496eCAS |

[57]  F. Weinhold, in Encyclopedia of Computational Chemistry (Eds P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer, III, P. R. Schreiner) 1998, pp. 1792–1821 (Wiley: Chichester).

[58]  J. K. Badenhoop, F. Weinhold, J. Chem. Phys. 1997, 107, 5406.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtlWisL8%3D&md5=612d7db88dceb9cac0178e7f601660d1CAS |

[59]  J. K. Badenhoop, F. Weinhold, J. Chem. Phys. 1997, 107, 5422.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtlWisLw%3D&md5=c602ffef7e808f4aace084cf5c5f46d5CAS |

[60]  J. K. Badenhoop, F. Weinhold, Int. J. Quantum Chem. 1999, 72, 269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvV2qsb4%3D&md5=05dbc27bd4f366471d2261d7aab3f719CAS |

[61]  V. F. Weisskopf, Science 1975, 187, 605.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvjvV2hsQ%3D%3D&md5=1f99252e8aeb6bde750877cb77bac5d8CAS |

[62]  P. A. Christiansen, W. E. Palke, J. Chem. Phys. 1977, 67, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkvFWjtL4%3D&md5=bb687c166ec4ff6b12b92659e75187a5CAS |

[63]  K. B. Wiberg, Acc. Chem. Res. 1996, 29, 229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisVymsrY%3D&md5=b71c9861f1b8b86341176b01056f1312CAS |

[64]  R. G. Pearson, J. Chem. Educ. 1987, 64, 561.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkvFGqtbs%3D&md5=1782a774ead1c1cb8b8742c041e0fe4fCAS |

[65]  R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys. 1978, 68, 3801.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXktlSqurc%3D&md5=f81a697d17b55b5ef8ad75023698ddcaCAS |

[66]  R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 1983, 105, 7512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXht1yrtw%3D%3D&md5=29916f1f58b9f1d3ab0082e27194c137CAS |

[67]  R. G. Pearson, W. E. Palke, J. Phys. Chem. 1992, 96, 3283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitVWnu70%3D&md5=dc0155b1b6c9b04847d0bbbaa46bf2caCAS |

[68]  J. M. Schulman, J. W. Moskowitz, C. Hollister, J. Chem. Phys. 1967, 46, 2759.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXkt1GksL0%3D&md5=64b1322823ffd1df68829d8714edad01CAS |

[69]  W. J. Hunt, W. A. Goddard, Chem. Phys. Lett. 1969, 3, 414.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXks1Cgs7g%3D&md5=1d43928a3bb14ab7a5faabc9063d8a71CAS |

[70]  I. Bâldea, Faraday Discuss. 2014, 174, 37.

[71]  U. Salzner, J. B. Lagowski, P. G. Pickup, R. A. Poirier, J. Comput. Chem. 1997, 18, 1943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntFCntr8%3D&md5=bb137bef91de1ea40aa29813bbb4473dCAS |

[72]  J. F. Stanton, Chem. Phys. Lett. 1997, 281, 130.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotFWksbY%3D&md5=b23ea4dc358a9b90479055cfd4ec7209CAS |

[73]  P. O. Löwdin, Adv. Chem. Phys. 1959, 2, 207.
         | Crossref | GoogleScholarGoogle Scholar |

[74]  K. Raghavachari, J. B. Anderson, J. Phys. Chem. 1996, 100, 12960.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1amsLs%3D&md5=af4b5873cd21122ca6f62a882e10bde0CAS |

[75]  R. J. Rico, T. J. Lee, M. Head-Gordon, Chem. Phys. Lett. 1994, 218, 139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsVCnur4%3D&md5=34fa9c83590b896234f6ec78de8642abCAS |

[76]  M. Böhme, G. Frenking, Chem. Phys. Lett. 1994, 224, 195.
         | Crossref | GoogleScholarGoogle Scholar |

[77]  J. F. Stanton, R. J. Bartlett, J. Chem. Phys. 1993, 98, 7029.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXksFKgu78%3D&md5=66607119bea4aac15b2f90072701abe2CAS |

[78]  R. O. Jones, O. Gunnarsson, Rev. Mod. Phys. 1989, 61, 689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXls1Snsbk%3D&md5=c5205b9ceedd38082a0ec1fa3e87237aCAS |