Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Correlation of Impedance and Effective Electrode Area of Iridium Oxide Neural Electrodes

Alexander R. Harris A D and Antonio G. Paolini B C
+ Author Affiliations
- Author Affiliations

A ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.

B School of Health Science, RMIT University, Bundoora, Vic. 3083, Australia.

C School of Psychology and Public Health, La Trobe University, Bundoora, Vic. 3086, Australia.

D Corresponding author. Email: alexrharris@gmail.com

Australian Journal of Chemistry 70(9) 1016-1024 https://doi.org/10.1071/CH17218
Submitted: 25 April 2017  Accepted: 12 July 2017   Published: 28 July 2017

Abstract

Iridium oxide is routinely used for bionic applications owing to its high charge injection capacity. The electrode impedance at 1 kHz is typically reported to predict neural recording performance. In this article, the impedance of activated iridium oxide films (AIROFs) has been examined. The impedance of unactivated iridium electrodes was half that of platinum electrodes of similar geometry, indicating some iridium oxide was present on the electrode surface. A two time constant equivalent circuit was used to model the impedance of activated iridium. The impedance at low and intermediate frequencies decreased with increasing number of activation pulses and total activation charge. The impedance at 12 Hz correlated with the steady-state diffusion electroactive area. The impedance at 12 Hz also correlated with the charge density of the electrode. The high charge density and low impedance of AIROFs may provide improved neural stimulation and recording properties compared with typically used platinum electrodes.


References

[1]  T. Peyser, E. Dassau, M. Breton, J. S. Skyler, Ann. N. Y. Acad. Sci. 2014, 1311, 102.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsFCgurs%3D&md5=e8308e66b9d21706b0bd419c7792f591CAS |

[2]  W. C. DeVries, J. L. Anderson, L. D. Joyce, F. L. Anderson, E. H. Hammond, R. K. Jarvik, W. J. Kolff, N. Engl. J. Med. 1984, 310, 273.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c%2FptlCrsw%3D%3D&md5=6940c6669b57f4df4643b7496e2803ddCAS |

[3]  C. C. McIntyre, A. Chaturvedi, R. R. Shamir, S. F. Lempka, Brain Stimulat. 2015, 8, 21.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  P. Seligman, J. Neural Eng. 2009, 6, 065006.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, J. P. Donoghue, Nature 2012, 485, 372.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntF2hs78%3D&md5=8aa23296520c8d9618dd086e6dc15e10CAS |

[6]  S. F. Cogan, Annu. Rev. Biomed. Eng. 2008, 10, 275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGru7nE&md5=0f70d2570048566ad7ff842b885dbf56CAS |

[7]  R. V. Shannon, IEEE Trans. Biomed. Eng. 1992, 39, 424.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383nsFKhuw%3D%3D&md5=6f0bc56b4d37ba40bce0bd74655b1bceCAS |

[8]  M. Jorfi, J. L. Skousen, C. Weder, J. R. Capadona, J. Neural Eng. 2015, 12, 011001.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  S. Gottesfeld, J. D. E. McIntyre, J. Electrochem. Soc. 1979, 126, 742.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXkt12mur0%3D&md5=5e5af57d299f528a74f47c30e4f173d2CAS |

[10]  A. R. Harris, A. G. Paolini, G. G. Wallace, Electrochim. Acta 2017, 230, 285.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjsVKntro%3D&md5=d2b70d2612d6283e371ddb87e315c83fCAS |

[11]  A. R. Harris, S. J. Morgan, J. Chen, R. M. I. Kapsa, G. G. Wallace, A. G. Paolini, J. Neural Eng. 2013, 10, 016004.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  A. R. Harris, P. J. Molino, R. M. I. Kapsa, G. M. Clark, A. G. Paolini, G. G. Wallace, Anal. Chem. 2015, 87, 738.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitV2ju7fK&md5=8e84d2726728114ca42ad5932ef94855CAS |

[13]  (a) A. R. Harris, P. J. Molino, R. M. I. Kapsa, G. M. Clark, A. G. Paolini, G. G. Wallace, Analyst 2015, 140, 3164.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjvF2ksrw%3D&md5=f0abf2fa2c62c22ebc88d264530938b8CAS |
      (b) A. R. Harris, R. Hutchinson, P. J. Molino, R. M. I. Kapsa, G. M. Clark, A. G. Paolini, G. G. Wallace, J. Electrochem. Soc. 2016, 163, H534.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. R. Harris, P. J. Molino, A. G. Paolini, G. G. Wallace, Synth. Met. 2016, 222, 338.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  G. Baranauskas, E. Maggiolini, E. Castagnola, A. Ansaldo, A. Mazzoni, G. N. Angotzi, A. Vato, D. Ricci, S. Panzeri, L. Fadiga, J. Neural Eng. 2011, 8, 066013.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) S. H. Glarum, J. H. Marshall, J. Electrochem. Soc. 1980, 127, 1467.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXkvVemtL0%3D&md5=d10691cfe12b59081c3e2d343ac4a9bbCAS |
      (b) K. S. Kang, J. L. Shay, J. Electrochem. Soc. 1983, 130, 766.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  X. Kang, J. Liu, H. Tian, C. Zhang, B. Yang, Y. NuLi, H. Zhu, C. Yang, Sens. Actuators B 2014, 190, 601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsleju77L&md5=471297e34531a95f13e0a93b038efb57CAS |

[17]  (a) W. F. Agnew, T. G. H. Yuen, D. B. McCreery, L. A. Bullara, Exp. Neurol. 1986, 92, 162.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL287msVOrtw%3D%3D&md5=128299c1c2b8511b1080a19c7758febbCAS |
      (b) D. J. Anderson, K. Najafi, S. J. Tanghe, D. A. Evans, K. L. Levy, J. F. Hetke, X. Xue, J. J. Zappia, K. D. Wise, IEEE Trans. Biomed. Eng. 1989, 36, 693.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  X. Liu, D. B. McCreery, R. R. Carter, L. A. Bullara, T. G. H. Yuen, W. F. Agnew, IEEE Trans. Rehab. Eng. 1999, 7, 315.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1Mvis1Kqsw%3D%3D&md5=943e468acd86a9db0854d059add8de88CAS |

[19]  (a) B. Aurian-Blajeni, X. Beebe, R. D. Rauh, T. L. Rose, Electrochim. Acta 1989, 34, 795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkvVKjtLk%3D&md5=638bcba3277a7053cd6a5061b26be834CAS |
      (b) T. Pauporté, R. Durand, J. Appl. Electrochem. 2000, 30, 35.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Papaderakis, D. Tsiplakides, S. Balomenou, S. Sotiropoulos, J. Electroanal. Chem. 2015, 757, 216.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  Y.-M. Chen, C. L. Alexander, C. Cleveland, M. E. Orazem, Electrochim. Acta 2017, 235, 437.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXlslyhtb4%3D&md5=050a7d7a975892cd0f24e93cf5eb19f6CAS |

[21]  A. R. Harris, S. J. Morgan, G. G. Wallace, A. G. Paolini, J. Visualized Exp. 2014, 85, e51084.