Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Zinc Electrodeposition in the Presence of an Aqueous Electrolyte Containing 1-Ethylpyridinium Bromide: Unexpected Oddities*

Max E. Easton A , Lisa C. Player A , Anthony F. Masters A and Thomas Maschmeyer A B
+ Author Affiliations
- Author Affiliations

A The Laboratory for Advanced Catalysis for Sustainability, School of Chemistry F11, University of Sydney, Sydney, NSW 2006, Australia.

B Corresponding author. Email: thomas.maschmeyer@sydney.edu.au

Australian Journal of Chemistry 70(9) 1025-1031 https://doi.org/10.1071/CH17281
Submitted: 23 May 2017  Accepted: 18 July 2017   Published: 3 August 2017

Abstract

The reversible electrodeposition of zinc was investigated in an aqueous electrolyte containing zinc bromide (50 mM) and 1-ethylpyridinium bromide ([C2Py]Br, 50 mM) by cyclic voltammetry, chronoamperometry, and scanning electron microscopy. Unusual voltammetric behaviour for the Zn/ZnII redox couple was observed in the presence of [C2Py]Br. Passivation of the redox couple was observed after a single deposition–stripping cycle at switching potentials more negative than −1.25 V versus Ag/AgCl. This unusual behaviour was attributed to the reduction of 1-ethylpyridinium cations to pyridyl radicals and their follow-up reactions, which influenced the zinc electrochemistry. This behaviour was further seen to modify the nucleation process of electrodeposition, which altered the morphology of zinc electrodeposits.


References

[1]  Z. Liu, S. Zein El Abedin, N. Borisenko, F. Endres, ChemElectroChem 2015, 2, 1159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvFSjs7s%3D&md5=f7edea8285f2c1697e392143e8a2be58CAS |

[2]  J. Ortiz-Aparicio, Y. Meas, T. Chapman, G. Trejo, R. Ortega, E. Chainet, J. Appl. Electrochem. 2015, 45, 67.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVKqs7bJ&md5=29ade6dbd22fce9f17f9485ea0306a15CAS |

[3]  A. P. Abbott, J. C. Barron, G. Frisch, K. S. Ryder, A. F. Silva, Electrochim. Acta 2011, 56, 5272.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlemsro%3D&md5=77a0696b5b18b61389c14ce8d7a904c1CAS |

[4]  M. Kar, B. Winther-Jensen, M. Forsyth, D. R. MacFarlane, Phys. Chem. Chem. Phys. 2013, 15, 7191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsVartbc%3D&md5=bf358c40c16005e5f90cfbffe7df803dCAS |

[5]  J. A. Choi, S. M. Eo, D. R. MacFarlane, M. Forsyth, E. Cha, D. W. Kim, J. Power Sources 2008, 178, 832.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFOnsrg%3D&md5=4757238ee3994fd2f8acff12b80f1dd9CAS |

[6]  J. H. Yang, H. S. Yang, H. W. Ra, J. Shim, J.-D. Jeon, J. Power Sources 2015, 275, 294.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVykur%2FF&md5=aabbbd887054e9fb80260ab991353ad4CAS |

[7]  D. J. Eustace, J. Electrochem. Soc. 1980, 127, 528.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhslWnsbw%3D&md5=8b2d65daa366911f25fa90f87a17ab5cCAS |

[8]  Y. W. D. Chen, K. S. W. Santhanam, A. J. Bard, J. Electrochem. Soc. 1981, 128, 1460.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmt1ars7k%3D&md5=a547ca10acdc7ccce519f7ed804840f9CAS |

[9]  K. R. Seddon, J. Chem. Technol. Biotechnol. 1997, 68, 351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisFWksr8%3D&md5=30314b9bc5cb680f77ea3890ce94cbe1CAS |

[10]  K. J. Cathro, K. Cedzynska, D. C. Constable, J. Power Sources 1985, 16, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xjs12htA%3D%3D&md5=d33ec1b3bce483bbd409e88c2763d275CAS |

[11]  K. J. Cathro, K. Cedzynska, D. C. Constable, P. M. Hoobin, J. Power Sources 1986, 18, 349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltlWmtA%3D%3D&md5=5a1346306c3d60c5b87b5e254fa59be1CAS |

[12]  I. Vogel, A. Moebius, Power Sources 1991, 13, 237.
         | 1:CAS:528:DyaK3sXpt1Oj&md5=87fb6871ec72ed9fc028cb20e7f4ee16CAS |

[13]  A. P. Abbott, K. J. McKenzie, Phys. Chem. Chem. Phys. 2006, 8, 4265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpslamsb4%3D&md5=140a6cb0a02584a8efff1f7b2e4368adCAS |

[14]  M. J. Deng, P. Y. Chen, T. I. Leong, I. W. Sun, J. K. Chang, W. T. Tsai, Electrochem. Commun. 2008, 10, 213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyqu78%3D&md5=c0c881d07d9a83148c0d5e64d3eaf795CAS |

[15]  M. Hayyan, F. S. Mjalli, M. A. Hashim, I. M. AlNashef, T. X. Mei, J. Ind. Eng. Chem. 2013, 19, 106.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKqurjO&md5=ef960c502d4997575a513de7d084bc18CAS |

[16]  A. Bakkar, V. Neubert, Electrochem. Commun. 2015, 51, 113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFyhtQ%3D%3D&md5=4e72c5622be4e12fbb45f81404dee1f4CAS |

[17]  H. Wang, Y. Jia, X. Wang, Y. Yao, D. Yue, Y. Jing, Electrochim. Acta 2013, 108, 384.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1eqt7rE&md5=35eb3ad5f5bee5c480fa7d7e80ff53e7CAS |

[18]  M. Waki, S. Fujita, S. Inagaki, J. Mater. Chem. A 2014, 2, 9960.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVWmu7rO&md5=400fa455239d4f9171dee5c19689a6c9CAS |

[19]  Y. Fang, K. Yoshii, X. Jiang, X.-G. Sun, T. Tsuda, N. Mehio, D. Sheng, Electrochim. Acta 2015, 160, 82.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXit1Ggtb8%3D&md5=73f81ea8ae31be41558284d6a0c1817aCAS |

[20]  G. H. Lane, Electrochim. Acta 2012, 83, 513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2jsr3L&md5=a2e7304791ac56deef4d46e05345462aCAS |

[21]  E. Lebègue, J. Agullo, M. Morin, D. Bélanger, ChemElectroChem 2014, 1, 1013.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  J. A. Keith, E. Carter, Chem. Sci. 2013, 4, 1490.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlyms7s%3D&md5=deaec33ce5cff0e91f4cb5166fe5297bCAS |

[23]  Y. Yan, E. L. Zeitler, J. Gu, Y. Hu, A. B. Bocarsly, J. Am. Chem. Soc. 2013, 135, 14020.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlamu7jL&md5=4de3144258561a31e4114c128f78a7eeCAS |

[24]  G. Seshadri, C. Lin, A. B. Bocarsly, J. Electroanal. Chem. 1994, 372, 145.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlt1Sis7k%3D&md5=d428202eadcdcf8fbb43e0f3302cb14aCAS |

[25]  M. Lipsztajn, R. A. Osteryoung, Electrochim. Acta 1984, 29, 1349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht1Wqtr4%3D&md5=02cb4b2bc7a793e476b1f1b05a502f49CAS |

[26]  M. Naarova, J. Volke, Collect. Czech. Chem. Commun. 1973, 38, 2670.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXis1GmtQ%3D%3D&md5=1f3f8b7a1935712819adbc3ed13378a3CAS |

[27]  L. Koefoed, S. Pedersen, K. Daasbjerg, Langmuir 2017, 33, 3217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXkslSmtrc%3D&md5=575f6b2598d04fb25196d8fd8e8a00e8CAS |

[28]  J. Pinson, F. Podvorica, Chem. Soc. Rev. 2005, 34, 429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFOksLo%3D&md5=5a73350d0257b92a491d8174abcb27a9CAS |

[29]  A. Sokolowski, J. Müller, T. Weyhermüller, R. Schnepf, P. Hildebrandt, K. Hildenbrand, E. Bothe, K. Wieghardt, J. Am. Chem. Soc. 1997, 119, 8889.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVeguro%3D&md5=f86dbbc29d3c9a83326970576a91fd8dCAS |

[30]  A. V. Piskunov, A. V. Maleeva, G. K. Fukin, V. K. Cherkasov, A. S. Bogomyakov, Inorg. Chim. Acta 2017, 455, 213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslOmsLfM&md5=93562c72a43321087a6b63baee961764CAS |

[31]  C. Zhang, Inorg. Chim. Acta 2009, 362, 5231.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVaisLrP&md5=952176ed27edef4a6eae7447f8deb1a9CAS |

[32]  W. Kaim, J. Organomet. Chem. 1983, 241, 157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkt1ams7Y%3D&md5=97436ca1319de3b3ba3286cfd93bbc0aCAS |

[33]  J. Zhang, Y. Tan, Z. Fu, Acta Crystallogr. Sect. E Struct. Rep. Online 2011, 67, m1701.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOgsrvF&md5=710f98abffae08facce732e21d590797CAS |

[34]  M. M. Yang, D. A. Crerar, D. E. Irish, J. Solution Chem. 1988, 17, 751.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtFOjurg%3D&md5=efb62a4fc624b5e329842e985e9cb109CAS |

[35]  J. G. Contreras, C. A. López, G. V. Seguel, Spectrosc. Lett. 1985, 18, 601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlvVynsrY%3D&md5=79ce2292c8ca56d3f59c44aff2ee2a45CAS |

[36]  N. Wang, A. Kähkönen, P. Damlin, T. Ääritalo, J. Kankare, C. Kvarnström, Electrochim. Acta 2015, 154, 361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFOms7nL&md5=4df372c4aebfb212401ef68c28f56fffCAS |

[37]  D. Grujicic, B. Pesic, Electrochim. Acta 2002, 47, 2901.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslSisrk%3D&md5=d47aa95f90c48afab9ecdc321c47fe6fCAS |

[38]  E. Gileadi, J. Electroanal. Chem. 2011, 660, 247.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WmurnF&md5=2bc0feb9c06ba1516bf08ad64bb748a7CAS |

[39]  B. Scharifker, G. Hills, J. Electroanal. Chem. 1981, 130, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xns1enug%3D%3D&md5=66177d829b7033f1ea7ab98dfc2e09c3CAS |

[40]  M. Xu, D. G. Ivey, W. Qu, Z. Xie, J. Power Sources 2015, 274, 1249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGhsLfO&md5=eaebc5af379aea652a4f922e8ca36279CAS |

[41]  H. Yang, R. G. Reddy, Electrochim. Acta 2014, 147, 513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Gmu7vP&md5=504749b0ba8cec0a8fcf90238b82a785CAS |

[42]  D. Desai, D. E. Turney, B. Anantharaman, D. A. Steingart, S. Banerjee, J. Phys. Chem. C 2014, 118, 8656.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkslCgsrw%3D&md5=77641e5435d93dbfc274728cc08f1577CAS |

[43]  T. J. Simons, P. M. Bayley, Z. Zhang, P. C. Howlett, D. R. Macfarlane, L. A. Madsen, J. Phys. Chem. B 2014, 118, 4895.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlsl2qtbY%3D&md5=74d8dfd0a144e53661d3ea6764ddd2eeCAS |

[44]  T. J. Simons, A. A. J. Torriero, P. C. Howlett, D. R. MacFarlane, M. Forsyth, Electrochem. Commun. 2012, 18, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFGitLs%3D&md5=dc99074a925a4cbc3d4ff670ab3b6228CAS |

[45]  L. Vieira, A. H. Whitehead, B. Gollas, J. Electrochem. Soc. 2014, 161, D7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFeqsL8%3D&md5=13fa50d516a52caa77388ce66cd3ef8eCAS |

[46]  L. Vieira, A. H. Whitehead, B. Gollas, ECS Trans. 2013, 50, 83.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  A. K. Burrell, R. E. Del Sesto, S. N. Baker, T. M. McCleskey, G. A. Baker, Green Chem. 2007, 9, 449.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslyqtrg%3D&md5=29b0e145dbbf3548da0f19a6195e4632CAS |