Experimental and Theoretical Investigation of the Reaction of Secondary Amines with Maleic Anhydride
Manjinder Kour A , Raakhi Gupta A and Raj K. Bansal A BA Department of Chemistry, The IIS University, Jaipur 302020, India.
B Corresponding author. Email: bansal56@gmail.com
Australian Journal of Chemistry 70(12) 1247-1253 https://doi.org/10.1071/CH17206
Submitted: 13 April 2017 Accepted: 24 June 2017 Published: 20 July 2017
Abstract
The reaction of secondary amines, namely 1-methylpiperazine, pyrrolidine, morpholine, 2-methylpiperidine, and diethylamine, with maleic anhydride has been investigated experimentally and theoretically at the DFT level. Under kinetic control, i.e. at −78°C or −15°C, amines add across the C=O functionality exclusively and the initially formed addition products isomerize to the corresponding N-substituted maleimic acid derivatives. In contrast to the acyclic α,β-unsaturated carbonyl compounds, amine does not add across the C=C functionality in maleic anhydride even under thermodynamic control. This behaviour of maleic anhydride can be rationalized on the basis of the local condensed Fukui functions, which reveal that the carbonyl carbon atoms in maleic anhydride are much harder than in an acyclic α,β-unsaturated carbonyl compound, such as acrolein. This prompts the amines to attack the carbonyl group in maleic anhydride exclusively.
References
[1] B. C. Trivedi, B. M. Culbertson, Maleic Anhydride 1982 (Springer: New York, NY).[2] M. A. Tallon, in Handbook of Maleic Anhydride Based Materials: Synthesis, Properties and Applications (Ed. O. M. Musa) 2016, pp. 59–149 (Springer: Heidelberg).
[3] D. Craig, J. J. Shipman, R. B. Fowler, J. Am. Chem. Soc. 1961, 83, 2885.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xhslyqsw%3D%3D&md5=6e9b04b43dc7e20687ad31f8e8da2e38CAS |
[4] M. C. Kloetzel, Org. React. 1948, 4, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXhtVOluw%3D%3D&md5=67c22a51ae4e339aa91da5b28638952fCAS |
[5] J. M. Barrales-Rienda, J. G. Ramos, M. S. Chaves, J. Fluor. Chem. 1977, 9, 293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXltlCgtLg%3D&md5=e89601115b987409d7cf290e925e3c23CAS |
[6] N. B. Mehta, A. P. Phillips, F. F. Lui, R. E. Brooks, J. Org. Chem. 1960, 25, 1012.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXhtFSnt7g%3D&md5=22e7128007ae3d45ef1f3741fb7e75a9CAS |
[7] F. N. Satoshi, P. Y. Reddy, T. T. Nagoya, Aichi-gun, U.S. Patent No. 5,965,746 1999.
[8] V. J. Belinelo, M. S. T. Campos, R. M. Antunes, R. A. G. Assenco, S. A. V. Filho, M. C. S. Lanna, E. C. Marcal, T. H. S. Fonseca, M. A. Gomes, J. C. Magalhaes, J. Pharm. Negat. Results 2013, 4, 19.
| Crossref | GoogleScholarGoogle Scholar |
[9] K. Liu, T. Chen, H. Jan, C. Shih, J. Chin. Chem. Soc. 1973, 20, 163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXltVCks7Y%3D&md5=ad1d08004290b849978c7428cdc743dbCAS |
[10] J. A. Van Doorn, R. L. Wife, Phosphorus Sulfur Silicon Relat. Elem. 1990, 47, 253.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvFOlur4%3D&md5=1126c96cbdf8b289a084f5511e8672e2CAS |
[11] C. Osuch, J. E. Franz, F. B. Zienty, J. Org. Chem. 1964, 29, 3721.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXksVSisg%3D%3D&md5=46a070ae82ca9de4d48f1bd9b6ec2a54CAS |
[12] E. Hedaya, S. Theodoropulos, Tetrahedron 1968, 24, 2241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXnvVemtQ%3D%3D&md5=f0e18eb74d367379fddd4a6ec04bdef5CAS |
[13] D. B. Denney, D. Z. Denney, Phosphorus Sulfur Silicon Relat. Elem. 1982, 13, 315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXnt1antg%3D%3D&md5=b72058d4faf823d3ae5d5c75fb5d1452CAS |
[14] M. E. Jung, in Comprehensive Organic Synthesis (Eds B. M. Trost, I. Fleming) 1991, Vol. 4, pp. 1–67 (Pergamon Press: Oxford).
[15] Conjugate Addition Reactions in Organic Synthesis, Tetrahedron Organic Chemistry Series Vol. 9 (Ed. P. Perlmutter) 1992 (Pergamon Press: Oxford).
[16] C. Bhanja, S. Jena, S. Nayak, S. Mohapatra, Beilstein J. Org. Chem. 2012, 8, 1668.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFKltL%2FE&md5=44ebbaa7f620b74ef0e5158f4d65915cCAS |
[17] X. Zeng, Chem. Rev. 2013, 113, 6864.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVWis70%3D&md5=b31f46e8789581e3848d4528772853aeCAS |
[18] Y. Zhang, W. Wang, Catal. Sci. Technol. 2012, 2, 42.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2js73F&md5=430baa291286ed9e6b00185b90c8729dCAS |
[19] C. F. Nising, S. Bräse, Chem. Soc. Rev. 2012, 41, 988.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1yhsQ%3D%3D&md5=88952a384d7c7e4311f9c27dd18c6cc3CAS |
[20] D. P. Nair, M. Podgórski, S. Chatani, T. Gong, W. Xi, C. R. Fenolis, C. N. Bowman, Chem. Mater. 2014, 26, 724.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht12ht7vK&md5=6108e136c460f37ca9568613cf47e718CAS |
[21] S. Nayak, S. Chakroborty, S. Bhakta, P. Panda, S. Mohapatra, Res. Chem. Intermed. 2016, 42, 2731.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVequrzM&md5=427cd9d65ec461b28f7e02d19e95d286CAS |
[22] R. Dalpozzo, G. Bartoli, G. Bencivenni, Symmetry 2011, 3, 84.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlCgtrk%3D&md5=775e4d9e60ee4caa40988aaacd2f46a9CAS |
[23] J. Sun, E.-Y. Xia, Q. Wu, C.-G. Yan, ACS Comb. Sci. 2011, 13, 421.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Kku78%3D&md5=9a7d7d37a5b1b2f7ee6fe8cb221773dfCAS |
[24] A. G. Schultz, Y. K. Yee, J. Org. Chem. 1976, 41, 4044.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXlsFShug%3D%3D&md5=95a0f95a4723e82e1881b7906a96c520CAS |
[25] H. J. Reich, W. H. Sikorski, J. Org. Chem. 1999, 64, 14.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVCrsbw%3D&md5=c477aeb3316c8e5a8e187d56fc907b98CAS |
[26] A. D. J. Calow, J. J. Carbó, J. Cid, E. Fernàndez, A. Whiting, J. Org. Chem. 2014, 79, 5163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsFSlu7w%3D&md5=00c0d0a2365580bdc1e39a6b35b832d0CAS |
[27] L.-W. Xu, C.-G. Xia, Eur. J. Org. Chem. 2005, 633.
| Crossref | GoogleScholarGoogle Scholar |
[28] P. R. Krishna, A. Sreeshailam, R. Srinivas, Tetrahedron 2009, 65, 9657.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ymurnL&md5=45f08f4d12cd8485aeee74f64f35d98aCAS |
[29] A.-G. Ying, L. Liu, G.-F. Wu, G. Chen, X.-Z. Chen, W.-D. Ye, Tetrahedron Lett. 2009, 50, 1653.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitlWlu70%3D&md5=6c6e024cc04a920302044be72d86a049CAS |
[30] X.-B. Liu, M. Lu, T.-T. Lu, G.-L. Gu, J. Chin. Chem. Soc. 2010, 57, 1221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1agtrk%3D&md5=aa8cdf350afef2ad9b99488b59c23dd8CAS |
[31] L.-Q. Lu, J.-R. Chen, W.-J. Xiao, Acc. Chem. Res. 2012, 45, 1278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFWrtb0%3D&md5=f6f7a1e36f7d4a028346a60a7cae19beCAS |
[32] F. Mendez, J. L. Gázquez, J. Am. Chem. Soc. 1994, 116, 9298.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXntVShs7w%3D&md5=35df65773e8c9aad841bd8f00c7976c2CAS |
[33] R. G. Pearson, J. Chem. Educ. 1987, 64, 561.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkvFGqtbs%3D&md5=1782a774ead1c1cb8b8742c041e0fe4fCAS |
[34] R. G. Parr, P. K. Chattaraj, J. Am. Chem. Soc. 1991, 113, 1854.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtV2hsbw%3D&md5=fdac2d5a0234b8fa1d2456deb376a1abCAS |
[35] P. K. Chattaraj, G. H. Liu, R. G. Parr, Chem. Phys. Lett. 1995, 237, 171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltl2jt7Y%3D&md5=6c28fa96e872c45d11114289f77f9e30CAS |
[36] R. G. Parr, Annu. Rev. Phys. Chem. 1983, 34, 631.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmtVSlsbY%3D&md5=6133593102dbc5a17e60bf83f8c5c023CAS |
[37] P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 2003, 103, 1793.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFGgu7g%3D&md5=9a88ae68f413393d6654dd7a3107b398CAS |
[38] W. Yang, W. J. Mortier, J. Am. Chem. Soc. 1986, 108, 5708.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xltlehtb8%3D&md5=2414c5fd85677b5b05bc935c7367e1bbCAS |
[39] A. Gurjar, P. Sinha, R. K. Bansal, Tetrahedron 2014, 70, 5052.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVWgsrzM&md5=29941d03176bdaf771973724532d7d13CAS |
[40] R. K. Roy, K. Hirao, S. Pal, J. Chem. Phys. 2000, 113, 1372.
| Crossref | GoogleScholarGoogle Scholar |
[41] P. Fuentealba, P. Perez, R. R. Contreras, J. Chem. Phys. 2000, 113, 2544.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVWmsro%3D&md5=54c9ee2be91d3d489f9e0c8e912e01a0CAS |
[42] F. L. Hirshfeld, Theor. Chim. Acta 1977, 44, 129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXksVCgsLg%3D&md5=82d3e6dd1375ed25d0f00495468dade5CAS |
[43] J. Olah, V. Alsenoy, A. B. Sannigrahi, J. Phys. Chem. A 2002, 106, 3885.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvFyntLk%3D&md5=1b0f6fad2a1b43069fc71a09d66953bcCAS |
[44] J. Melin, P. W. Ayers, J. V. Ortiz, J. Phys. Chem. A 2007, 111, 10017.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGhtrfM&md5=e8e4a9587df5c4d7ac969f4a41fb9529CAS |
[45] F. R. Ramos-Morales, S. Durand-Niconoff, J. Correa-Basurto, F. J. Melindez-Bustamante, J. S. Cruz-Sanchez, J. Mex. Chem. Soc. 2008, 52, 241.
| 1:CAS:528:DC%2BD1MXltlOlsb8%3D&md5=ac834b84dbcdb1aa23978037ecb5ca68CAS |
[46] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=cd069e9165ffddacc154f2d6ee26a63bCAS |
[47] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=a4fd99b0357ab941e5799cbcb338fdb2CAS |
[48] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. lyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Auatin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03 (revision B.05) 2003 (Gaussian, Inc.: Wallingford, CT).
[49] E. D. Glending, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO Version 3.1, as implemented in Gaussian 03.