Solid-Phase O-Glycosylation with a Glucosamine Derivative for the Synthesis of a Glycopeptide
Philip Ryan A B C , Andy Hsien Wei Koh D , Anna Elizabeth Lohning D and Santosh Rudrawar A B C E FA Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4222, Australia.
B School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Qld 4222, Australia.
C School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
D Faculty of Health Sciences and Medicine, Bond University, Robina, Qld 4229, Australia.
E Quality Use of Medicines Network, Gold Coast, Qld 4222, Australia.
F Corresponding author. Email: s.rudrawar@griffith.edu.au
Australian Journal of Chemistry 70(10) 1151-1157 https://doi.org/10.1071/CH17201
Submitted: 10 April 2017 Accepted: 16 June 2017 Published: 20 July 2017
Abstract
An efficient synthesis of the O-linked glycosylamino acid Fmoc–l-Ser((Ac)3–β-d-GlcNAc)-OH building block is described. The utility of the method was demonstrated with direct solid-phase O-glycosylation of the hydroxyl group on the amino acid (Ser) side chain of a human α-A crystallin-derived peptide (AIPVSREEK) in nearly quantitative glycosylation yield.
References
[1] G. W. Hart, J. Biol. Chem. 2014, 289, 34422.| Crossref | GoogleScholarGoogle Scholar |
[2] M. B. Lazarus, Y. Nam, J. Jiang, P. Sliz, S. Walker, Nature 2011, 469, 564.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFGisg%3D%3D&md5=d4ddc55fbe60f44ea8a75738a14c4012CAS |
[3] J. Ma, G. W. Hart, Clin. Proteomics 2014, 11, 8.
| Crossref | GoogleScholarGoogle Scholar |
[4] X. Yang, F. Zhang, J. E. Kudlow, Cell 2002, 110, 69.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsV2mt7o%3D&md5=df17cb851b82a6e2b4d3206d53dfb960CAS |
[5] W. B. Dias, W. D. Cheung, G. W. Hart, Biochem. Biophys. Res. Commun. 2012, 422, 224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlSitbg%3D&md5=d8639ba470c67bf2b15c811f0ef9df08CAS |
[6] G. W. Hart, M. P. Housley, C. Slawson, Nature 2007, 446, 1017.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFersr4%3D&md5=cc9b42901817df0029eac96d722c375dCAS |
[7] R. Fujiki, T. Chikanishi, W. Hashiba, H. Ito, I. Takada, R. G. Roeder, H. Kitagawa, S. Kato, Nature 2009, 459, 455.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks12ktbg%3D&md5=a606bfbce9014b05d39fc27e6bda3c60CAS |
[8] M. R. Bond, J. A. Hanover, J. Cell Biol. 2015, 208, 869.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtlSmu7w%3D&md5=4b6e3420f291b820018c485ead8c4a94CAS |
[9] X. Yang, P. P. Ongusaha, P. D. Miles, J. C. Havstad, F. Zhang, W. Venus So, J. E. Kudlow, R. H. Michell, J. M. Olefsky, S. J. Field, R. M. Evans, Nature 2008, 451, 964.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yns74%3D&md5=3fb9d957854a7220e6d04eba53921078CAS |
[10] M. Brownlee, Nature 2001, 414, 813.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhtlyltg%3D%3D&md5=b54e543bb071624cece0da48d641c299CAS |
[11] C. M. Ferrer, T. P. Lynch, V. L. Sodi, J. N. Falcone, L. P. Schwab, D. L. Peacock, D. J. Vocadlo, T. N. Seagroves, M. J. Reginato, Mol. Cell 2014, 54, 820.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXoslyisbo%3D&md5=393d2c2d989796a0b3b97f1fdca9edfaCAS |
[12] S. A. Yuzwa, D. J. Vocadlo, Chem. Soc. Rev. 2014, 43, 6839.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFGgsL8%3D&md5=97bc363a4fd044ab3dea76088fd2a70eCAS |
[13] J. W. Bullen, J. L. Balsbaugh, D. Chanda, J. Shabanowitz, D. F. Hunt, D. Neumann, G. W. Hart, J. Biol. Chem. 2014, 289, 10592.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlCiu74%3D&md5=2978d41c83d15333c516db982a0b4bc2CAS |
[14] R. G. Spiro, Glycobiology 2002, 12, 43R.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVyhtrY%3D&md5=67df71fb34157ee17bf1f05bd400fb1dCAS |
[15] P. H. Seeberger, W.-C. Haase, Chem. Rev. 2000, 100, 4349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns12qtLg%3D&md5=bdf72d0793f18cff86ec02667dd05e8fCAS |
[16] V. L. Campo, A. D. L. Borges, I. Carvalho, J. Braz. Chem. Soc. 2006, 17, 648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Ogsr8%3D&md5=36991b74366449d002b302db9b8238ccCAS |
[17] Y. Zhang, S. M. Muthana, D. Farnsworth, O. Ludek, K. Adams, J. J. Barchi, J. C. Gildersleeve, J. Am. Chem. Soc. 2012, 134, 6316.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Squ7w%3D&md5=205d763082635df61f6879fd55797ad5CAS |
[18] N.-H. Yao, W.-Y. He, K. S. Lam, G. Liu, J. Comb. Chem. 2004, 6, 214.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWisLnE&md5=219ab2b92889078984d1bd6ed7d14b10CAS |
[19] K. M. Halkes, C. H. Gotfredsen, M. Grotli, L. P. Miranda, J. O. Duus, M. Meldal, Chem. – Eur. J. 2001, 7, 3584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFKlsrg%3D&md5=2027695567643b74159ed1e7a6f301feCAS |
[20] M. Hurevich, P. H. Seeberger, Chem. Comm. 2014, 1851.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFChtb8%3D&md5=1aefcf9220c756f958c64a9236f32509CAS |
[21] J. Seibel, L. Hillringhaus, R. Moraru, Carb. Res. 2005, 340, 507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXoslaqsQ%3D%3D&md5=9abb43f9799966a49c1085b075f3b761CAS |
[22] W. Dullenkopf, J. C. Castro-Palomino, L. Manzoni, R. R. Schmidt, Carb. Res. 1996, 296, 135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnslymsQ%3D%3D&md5=2f31bf47d4c4f6448380e9dec02947b2CAS |
[23] U. Ellervik, G. Magnusson, Carb. Res. 1996, 280, 251.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XislOktQ%3D%3D&md5=c62dce1b17ae8e45380fc8c33e4b3350CAS |
[24] K. Sasaki, S. Matsumura, K. Toshima, Tetrahedron Lett. 2006, 47, 9039.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cmtr3P&md5=875f58283d7fd2dc7edaa30ba108ef75CAS |
[25] G. Arsequell, L. Krippner, R. A. Dwek, S. Y. C. Wong, J. Chem. Soc. Chem. Commun. 1994, 2383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhvVyktLk%3D&md5=8bdd6bcfc2d919abf9e522c6cd0b7457CAS |
[26] A. Stévenin, F.-D. Boyer, J.-M. Beau, Eur. J. Org. Chem. 2012, 1699.
| Crossref | GoogleScholarGoogle Scholar |
[27] I. Carvalho, S. L. Scheuerl, K. P. R. Kartha, R. A. Field, Carb. Res. 2003, 338, 1039.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFeht7c%3D&md5=0ed29c75bebdf57b1775b3c89adf67eeCAS |
[28] M. A. Brimble, P. J. Edwards, P. W. R. Harris, G. E. Norris, M. L. Patchett, T. H. Wright, S.-H. Yang, S. E. Carley, Chem. – Eur. J. 2015, 21, 3556.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlWisbk%3D&md5=09a6aa497975ea1c4e3d3ec0cec7d37eCAS |
[29] A. Takasu, T. Houjyou, Y. Inai, T. Hirabayashi, Biomacromolecules 2002, 3, 775.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xkt1Cls7w%3D&md5=c3dd4d9db6d32414685e62040380248bCAS |
[30] L. A. Salvador, M. Elofsson, J. Kihlberg, Tetrahedron 1995, 51, 5643.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1OgsLY%3D&md5=59b623a91c267b9c197cbea19901de6bCAS |
[31] A. S. Norgren, T. Norberg, P. I. Arvidsson, J. Pept. Sci. 2007, 13, 717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKktbrJ&md5=c791f088f7b1e94b91b62cb5b11db936CAS |
[32] S. A. Mitchell, M. R. Pratt, V. J. Hruby, R. Polt, J. Org. Chem. 2001, 66, 2327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslals7s%3D&md5=9f72b445dc25bef149a41c05f07717fcCAS |
[33] T. Reipen, H. Kunz, Synthesis 2003, 2487.
| 1:CAS:528:DC%2BD3sXpsV2htLc%3D&md5=b87470abceda55f41b11ca3e0c3480e7CAS |
[34] C. H. Röhrig, O. A. Retz, L. Hareng, T. Hartung, R. R. Schmidt, ChemBioChem 2005, 6, 1805.
| Crossref | GoogleScholarGoogle Scholar |
[35] A. Vargas-Berenguel, M. Meldal, H. Paulsen, K. Bock, J. Chem. Soc., Perkin Trans. 1 1994, 2615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtFahtrg%3D&md5=d484530771ad1f45fc6e5335df709c09CAS |
[36] H. G. Garg, R. W. Jeanloz, Carb. Res. 1976, 52, 246.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhsVSnt7c%3D&md5=097cd599253b14cbebf1b070f24abb32CAS |
[37] H. Kunz, in Preparative Carbohydrate Chemistry (Ed. S. Hanessian) 1997, pp. 265–281 (Marcel Decker: New York, NY).
[38] G. Braum, Synthese von Glycopeptiden mit photoaktivierbaren Gruppen im Saccharidteil 1991, Ph.D. thesis, University of Mainz, Germany.
[39] S. Talat, M. Thiruvikraman, S. Kumari, K. J. Kaur, Glycoconj. J. 2011, 28, 537.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKmtrjM&md5=391edd0c025900ab655ea6cf0d095ab7CAS |
[40] K. M. Halkes, C. H. Gotfredsen, M. Grøtli, L. P. Miranda, J. O. Duus, M. Meldal, Chem. – Eur. J. 2001, 7, 3584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFKlsrg%3D&md5=2027695567643b74159ed1e7a6f301feCAS |
[41] M. Schimpl, X. Zheng, V. S. Borodkin, D. E. Blair, A. T. Ferenbach, A. W. Schüttelkopf, I. Navratilova, T. Aristotelous, O. Albarbarawi, D. A. Robinson, M. A. Macnaughtan, D. M. F. van Alten, Nat. Chem. Biol. 2012, 8, 969.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFOmtrjM&md5=c07e23fcc9ca2406b114592ff6d2cf0aCAS |
[42] S. Pathak, J. Alonso, M. Schimpl, K. Rafie, D. E. Blair, V. S. Borodkin, A. W. Schüttelkopf, O. Albarbarawi, D. M. F. van Alten, Nat. Struct. Mol. Biol. 2015, 22, 744.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1entLfO&md5=add106e467b5af7dcebbbca34ada05a8CAS |
[43] E. P. Roquemore, A. Dell, H. R. Morris, M. Panico, A. J. Reason, L.-A. Savoy, G. J. Wistow, J. S. Zigler, B. J. Earles, G. W. Hart, J. Biol. Chem. 1992, 267, 555.
| 1:CAS:528:DyaK38Xjs1CgtA%3D%3D&md5=0b633e53af806e8fcb33ca45e762bcfcCAS |
[44] T. M. Leavy, C. R. Bertozzi, Bioorg. Med. Chem. Lett. 2007, 17, 3851.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVCltb8%3D&md5=56da6e357e0322b9bcd533ae1436ef68CAS |
[45] A. Schleyer, M. Meldal, R. Manat, H. Paulsen, K. Bock, Angew. Chem. Int. Ed. Engl. 1997, 36, 1976.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmslGqtb8%3D&md5=3d3432da603ce97bf775258b815097b9CAS |