A Highly Sensitive Non-Enzymatic Sensor Based on a Cu/MnO2/g-C3N4-Modified Glassy Carbon Electrode for the Analysis of Hydrogen Peroxide Residues in Food Samples
Gaopeng Dai A , Jingwen Xie A , Cheng Li A and Suqin Liu A BA School of Chemical Engineering and Food Science, Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China.
B Corresponding author. Email: liusuqin888@126.com
Australian Journal of Chemistry 70(10) 1118-1126 https://doi.org/10.1071/CH17072
Submitted: 7 February 2017 Accepted: 26 May 2017 Published: 20 June 2017
Abstract
A simple and highly sensitive method for the determination of hydrogen peroxide was developed by electrodepositing Cu and MnO2 onto a g-C3N4 coated glassy carbon electrode in a one-step procedure. The morphology of the fabricated electrode material was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The electrochemical properties were measured using cyclic voltammetry (CV) and chronoamperometry. The modified sensor exhibits high catalytic activity towards electrochemical oxidation of hydrogen peroxide in a neutral phosphate buffer solution. Within the concentration ranges of 0.01–20 mM and 20–400 mM, the fabricated sensor shows a good linear relationship with the oxidation peak current, the detection limit is 0.85 × 10−6 M. Furthermore, the sensor exhibits high selectivity, good stability, and reproducibility. We successfully applied the sensor to detect hydrogen peroxide residues in food samples with satisfactory results, providing a new approach for food security evaluation.
References
[1] D. Li, L. Meng, S. C. Dang, D. L. Jiang, W. D. Shi, J. Alloys Compd. 2017, 690, 1.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVGgsLrP&md5=f5b8646ca87bedca6c725b72af9dc2bcCAS |
[2] The Government of the Hong Kong Special Administrative Region – Centre for Food Safety, Use of Hydrogen Peroxide in Food. Available at: http://www.cfs.gov.hk/english/programme/programme_rafs/programme_rafs_fa_02_02.html, 2013 (accessed 5 January 2017).
[3] R. Zhang, W. Chen, Biosens. Bioelectron. 2017, 89, 249.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xit1Siu7s%3D&md5=1d729455ffeaac250a2a41c03fb3993cCAS |
[4] P. Gimeno, C. Bousquet, N. Lassu, A.-F. Maggio, C. Civade, C. Brenier, L. Lempereur, J. Pharm. Biomed. Anal. 2015, 107, 386.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Oht7k%3D&md5=18a71be3e458967f1570ed183337afa9CAS |
[5] P. V. Rodionov, E. A. Alieva, E. A. Sergeeva, I. A. Veselova, T. N. Shekhovtsova, J. Anal. Chem. 2016, 71, 932.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlyksrbJ&md5=5bdbf260d62b2286696ddfd91ffd25c7CAS |
[6] F. M. Qiao, Q. Q. Qi, Z. Z. Wang, K. Xu, S. Y. Ai, Sens. Actuators B 2016, 229, 379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xks1Churw%3D&md5=995fdabc6b66711efdd9eea15302f962CAS |
[7] J. W. Liu, Y. Luo, Y. M. Wang, L. Y. Duan, J. H. Jiang, R. Q. Yu, ACS Appl. Mater. Interfaces 2016, 8, 33439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFSit7vL&md5=e0154c7c413bbf85ecaea6c20f972e7dCAS |
[8] R. Lei, Z. X. Du, Y. H. Qiu, S. F. Zhu, Luminescence 2016, 31, 1158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFSju7bJ&md5=3d30003750ba3310fa2cf20e7c751723CAS |
[9] R. Zhang, S. He, C. Zhang, W. Chen, J. Mater. Chem. B 2015, 3, 4146.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXms1Kjtrw%3D&md5=bc3320101897ad348f865e1f2affb0adCAS |
[10] O. Seven, F. Sozmen, I. S. Turan, Sens. Actuators B 2017, 239, 1318.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFyrs73J&md5=652c5b50f40aeb6237024ccd45567bf0CAS |
[11] X. Y. Lin, Y. N. Ni, S. Kokot, Biosens. Bioelectron. 2016, 79, 685.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XlvVGgsw%3D%3D&md5=a2b55b0660085e901f65584d661effaeCAS |
[12] H. Y. Song, Y. N. Ni, S. Kokot, Colloids Surf. A 2015, 465, 153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGqsLnF&md5=1d58ba61e5c262b063c6ecf695576fc7CAS |
[13] L. L. Feng, R. Wang, Y. L. Shi, H. B. Wang, J. H. Yang, J. Zhu, Y. Chen, N. Yuan, Int. J. Electrochem. Sci. 2016, 11, 5962.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1ymsL7I&md5=3802da4257a2ed724cb31ead0bb69eb1CAS |
[14] B. Amanulla, S. Palanisamy, S. M. Chen, V. Velusamy, T. W. Chiu, T. W. Chen, S. K. Ramaraj, J. Colloid Interface Sci. 2017, 487, 370.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslGhsLfO&md5=94d3c9a837e2daaabe82abc0e4d433ddCAS |
[15] J. Ju, W. Chen, Anal. Chem. 2015, 87, 1903.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFehsbbI&md5=c66d999082f8b5abdec53c2f8cd427e2CAS |
[16] C. Zhang, L. Li, J. Ju, W. Chen, Electrochim. Acta 2016, 210, 181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVSgtrnJ&md5=901b644051a93af80a0eefe39077221dCAS |
[17] R. Zhang, W. Chen, Sci. Bull. 2015, 60, 522.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjvFemt7k%3D&md5=5d841e1a83ca782712796d24dbacea12CAS |
[18] B. Zhang, Y. L. Cui, H. F. Chen, B. Q. Liu, G. N. Chen, D. P. Tang, Electroanalysis 2011, 23, 1821.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVWrsrg%3D&md5=37f175452ccf1699ff0c31f987f21a95CAS |
[19] P. Kanyong, S. Rawlinson, J. Davis, J. Electroanal. Chem. 2016, 766, 147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xis1ejtbw%3D&md5=f7f769ede77bdf4fe9124400296c0500CAS |
[20] N. Nasirizadeh, S. Hajihosseini, Z. Shekari, M. Ghaani, Food Anal. Methods 2015, 8, 1546.
| Crossref | GoogleScholarGoogle Scholar |
[21] N. Nasirizadeh, Z. Shekari, A. Nazari, M. Tabatabaee, J. Food Drug Anal. 2016, 24, 72.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlWls7%2FJ&md5=ec799fe41f730aa45d567f859020be35CAS |
[22] R. S. Freire, C. A. Pessoa, L. D. Mello, L. T. Kubota, J. Braz. Chem. Soc. 2003, 14, 230.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVyhur8%3D&md5=5b3bffc5e1afc7e9adde81b1fda3fba7CAS |
[23] Y. Zheng, Z. S. Zhang, C. H. Li, J. Mol. Catal. Chem. 2016, 423, 463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlShu7bI&md5=09305144e4834f38d7894914be17b23aCAS |
[24] J. L. Zhang, Z. W. Zhu, J. W. Di, Y. M. Long, W. F. Li, Y. F. Tu, Electrochim. Acta 2015, 186, 192.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslygsbbL&md5=3c9c4079fcde684dd93d1c1ca792594aCAS |
[25] H. F. Xu, X. Zhu, Y. Q. Dong, H. S. Wu, Y. M. Chen, Y. W. Chi, Sens. Actuators B 2016, 236, 8.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xps1agtb8%3D&md5=5bbbdce6a71784000e2e14154ef0f4fcCAS |
[26] S. Q. Zhao, T. M. Liu, M. Sufyan Javed, W. Zeng, S. Hussain, Y. Zhang, X. H. Peng, Electrochim. Acta 2016, 191, 716.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslygsL0%3D&md5=07141b2b15f276d4ca1820b38feac32dCAS |
[27] M. Liu, S. He, W. Chen, Nanoscale 2014, 6, 11769.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Kkt7zF&md5=654b984523deceec230fc301de42bea3CAS |
[28] M. Liu, R. Liu, W. Chen, Biosens. Bioelectron. 2013, 45, 206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkslalsr4%3D&md5=1917a8be54a25145e669d890820c768bCAS |
[29] Q. Li, J. J. He, D. Q. Liu, H. W. Yue, S. Bai, B. L. Liu, L. L. Gu, D. Y. He, J. Alloys Compd. 2017, 693, 970.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1ejtrrL&md5=e8268f7c501c3103f2c3e126f7381707CAS |
[30] H. D. Liu, Z. L. Hu, Y. Y. Su, H. B. Ruan, R. Hu, L. Zhang, Appl. Surf. Sci. 2017, 392, 777.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFyku77J&md5=4bf3b97c7df1c8ad37b6fc0789deda23CAS |
[31] X. Q. Wang, L. Dou, L. Yang, J. Y. Yu, B. Ding, J. Hazard. Mater. 2017, 324, 203.
| Crossref | GoogleScholarGoogle Scholar |
[32] L. X. Zuo, L. P. Jiang, E. S. Abdel-Halim, J. J. Zhu, Ultrason. Sonochem. 2017, 35, 219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1amt7vK&md5=fd66ba5c405412e0b06f0c3c7857540cCAS |
[33] T. Zhang, L. Y. Kong, Y. T. Dai, X. J. Yue, J. Rong, F. X. Qiu, J. M. Pan, Chem. Eng. J. 2017, 309, 7.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs12ns7vO&md5=d68ac99bf7a3eb32e1d7b3a9bea6edf0CAS |
[34] F. Y. Zeng, Y. Pan, Y. Yang, Q. L. Li, G. Y. Li, Z. H. Hou, G. Gu, Electrochim. Acta 2016, 196, 587.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktVyju7Y%3D&md5=447e129625192706c199a96265a90afbCAS |
[35] S. Zhang, J. B. Zheng, Talanta 2016, 159, 231.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVGiurjI&md5=3907770797d0647de5a975243bd3a6deCAS |
[36] Z. L. Wu, C. K. Li, J. G. Yua, X. Q. Chen, Sens. Actuators B 2017, 239, 544.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlegtrbF&md5=8e6dd60552ebacea90bffb74b6760db5CAS |
[37] S. He, B. Zhang, M. Liu, W. Chen, RSC Adv. 2014, 4, 49315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1WjsLnK&md5=c57e58b22a7f75e5ea83085c0a9d615aCAS |
[38] C. Du, S. J. He, X. H. Gao, W. Chen, ChemCatChem 2016, 8, 2885.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlOrtb%2FE&md5=1c9133259df4785dc919801a45314b71CAS |
[39] J. Gong, G. H. Wei, J. A. Barnard, G. Zangari, Metall. Mater. Trans. A 2005, 36, 2705.
| Crossref | GoogleScholarGoogle Scholar |