Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Influence of Adsorbent Nature on the Dynamic Headspace Study of Insect Semiochemicals

Sergio A. Rodriguez A B , María L. Paliza A and Monica A. Nazareno A
+ Author Affiliations
- Author Affiliations

A Centro de Investigaciones y Transferencia Santiago del Estero (CITSE)-CONICET-Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero 4200, Argentina.

B Corresponding author. Email: drsergiorod@gmail.com

Australian Journal of Chemistry 70(8) 902-907 https://doi.org/10.1071/CH17064
Submitted: 2 February 2017  Accepted: 14 March 2017   Published: 3 April 2017

Abstract

In chemical ecology studies (insect–insect, insect–plant relationships), it is important to choose the appropriate sampling methods and the correct optimization of sampling by using dynamic systems. In the present work, different adsorbents were evaluated in a dynamic system that presents a stream of purified air flowing through an aeration chamber containing a mixture of volatile organic compounds, mainly insect semiochemicals such as α-pinene, sulcatone, β-linalool, menthone, isomenthone, methyl salicylate, grandlure I, grandlure II, grandlure III, grandlure IV, eugenol, and α-ionone. Traditional adsorbents such as Tenax TA, Porapak Q, Hayesep Q, and activated charcoal were evaluated; further, alternatives such as Porapak Rxn RP, HLB, SCX, and silica gel, among others were proposed owing to their lower cost. The results demonstrated that Porapak Q and Porapak Rxn RP, despite their different chemical composition, were able to produce similar ratios of compounds to that of the reference solution and, moreover, with the highest recovery yields. However, it is important to emphasize the adsorption selectivity provided by SCX for eugenol and α-ionone. When Porapak Rxn RP was used in the analysis of Eucalyptus globulus volatiles, excellent results were obtained, and these agree with reported data from a hydrodistillation method.


References

[1]  C. Malosse, P. Ramirez-Lucas, D. Rochat, J. P. Morin, J. High Resolut. Chromatogr. 1995, 18, 669.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSmu7zP&md5=def4179fbc323b6fd263e4214b15af74CAS |

[2]     (a) H. E. Hummel, T. A. Miller, Techniques in Pheromone Research 1984 (Springer-Verlag Inc.: New York, NY).
         (b) J. G. Millar, J. J. Sims, in Methods in Chemical Ecology (Eds J. G. Millar, K. E. Haynes) 1998, pp. 1–31 (Kluwer-Academic Publishers: Norwell, MA).
      (c) P. H. G. Zarbin, J. T. B. Ferreira, W. S. Leal, Quim. Nova 1999, 22, 263.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) A. C. Soria, M. J. García-Sarrió, M. L. Sanz, Trends Analyt. Chem. 2015, 71, 85.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVOls7rE&md5=d06c4e63234d974c495f7831efdf5e72CAS |
         (b) B. Kolb, L. S. Ettre, Static Headspace Gas Chromatography: Theory and Practice 1997 (Wiley–VCH: New York, NY).

[4]  C. F. Ross, in Comprehensive Sampling and Sample Preparation (Ed. J. Pawliszyn) 2012, pp. 27–50 (Elsevier: Amsterdam).

[5]  Z. Zhang, J. Pawliszyn, Anal. Chem. 1995, 67, 34.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXis1ClsL8%3D&md5=9a9848524841a4f77230391c5f047e1aCAS |

[6]  J. Fäldt, M. Eriksson, I. Valterovác, A. K. Borg-Karlson, Z. Naturforsch C 2000, 55c, 180.

[7]  S. A. Rodríguez, M. L. P. Pérez, M. A. Nazareno, Bull. Entomol. Res. 2016, 106, 494.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) D. W. Ross, G. E. Daterman, A. S. Munson, West. N. Am. Naturalist 2005, 65, 123.
      (b) D. S. Pureswaran, R. Gries, J. H. Borden, Chemoecology 2004, 14, 59.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. P. W. Huber, R. Gries, J. H. Borden, H. D. Pierce, Chemoecology 2000, 10, 103.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. Schierling, K. Seifert, S. R. Sinterhauf, J. B. Rieß, J. C. Rupprecht, K. Dettner, Chemoecology 2013, 23, 45.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  P. Gonzalez-Audino, R. Griffo, P. Gatti, G. Allegro, E. Zerba, Agrofor. Syst. 2013, 87, 109.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) A. Giglio, P. Brandmayr, R. Dalpozzo, G. Sindona, A. Tagarelli, F. Talarico, T. Brandmayr, E. A. Ferrero, Microsc. Res. Tech. 2009, 72, 351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVequ78%3D&md5=9ac8a75ce081a3d6c7180fa9491164e9CAS |
      (b) B. Y. Han, Z. M. Chen, J. Agric. Food Chem. 2002, 50, 2571.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. A. MacKay, J. D. Sweeney, N. K. Hillier, J. Insect Physiol. 2015, 83, 65.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  R. Ramachandran, Z. R. Khan, P. Caballero, B. O. Juliano, J. Chem. Ecol. 1990, 16, 2647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXjvFGktA%3D%3D&md5=7acc344b5a1ad98700aec7d04839f3f3CAS |

[12]  J. D. Warthen, C. Lee, E. B. Jang, D. R. Lance, D. O. McInnis, J. Chem. Ecol. 1997, 23, 1891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1Cgu7k%3D&md5=d425237e66aeb66e4e830b43f1533c1cCAS |

[13]  (a) F. R. N. Knoll, L. M. Santos, Rev. Bras. Entomol. 2012, 56, 481.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) T. Shimoda, Exp. Appl. Acarol. 2010, 50, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  D. Szczerbowski, G. Torrens, M. Rodrigues, O. Trevisan, S. Gomes, A. Tröger, K. Mori, W. Francke, P. Zarbin, Tetrahedron Lett. 2016, 57, 2842.and references therein.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XptVSqur4%3D&md5=9c240d7eb0b15dac752b630813f6e133CAS |

[15]  (a) Z. Szendrei, A. Averill, H. Alborn, C. Rodriguez-Saona, J. Chem. Ecol. 2011, 37, 387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFCisL0%3D&md5=4c2e3ad603e30f3555bba812f0ffa6adCAS |
      (b) F. J. Eller, R. J. Bartelt, B. S. Shasha, D. J. Schuster, D. G. Riley, P. A. Stansly, T. F. Mueller, K. D. Shuler, B. Johnson, J. H. Davis, C. A. Sutherland, J. Chem. Ecol. 1994, 20, 1537.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. C. Dickens, G. D. Prestwich, J. Chem. Ecol. 1989, 15, 529.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  J. A. Byers, G. Birgersson, W. Francke, Chemoecology 2013, 23, 251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslOksb%2FI&md5=7b25e561cebde8ce2146434069f5a51eCAS |

[17]  (a) K. H. Tan, R. Nishida, J. Insect Sci. 2012, 12, 1.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. Chen, M. Klein, C. Sheng, Y. Lia, Q. Lid, J. Asia Pac. Entomol. 2013, 16, 479.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  (a) E. A. Lingenfelter, R. N. Williams, L. W. Haynes, D. S. Fickle, Entomol. Sci. 2003, 38, 104.
      (b) R. N. Williams, D. S. Fickle, T. P. McGovern, M. G. Klein, J. Econ. Entomol. 2000, 93, 1480.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  N. G. Agelopoulos, J. H. Pickett, J. Chem. Ecol. 1998, 24, 1161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksVOqsrc%3D&md5=596ff771abf17148dce3456727408edfCAS |

[20]  (a) M. Schneider, K. U. Goss, Anal. Chem. 2009, 81, 3017.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFyksb8%3D&md5=f6b3228d0fb51a94976ccf846fe706e4CAS |
      (b) S. K. Poole, C. F. Poole, Anal. Commun. 1996, 33, 353.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. H. Abraham, D. P. Walsh, J. Chromatogr. A 1992, 627, 294.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  A. A. Il’ina, A. Yu. Ryabov, A. V. Chuikin, A. A. Velikov, J. Anal. Chem. 2015, 70, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVClsL4%3D&md5=baf1aa0098f7aaa5a17b03980bcb80d7CAS |

[22]  H. Singh, S. Kaur, K. Negi, S. Kumari, V. Saini, D. Batish, R. Kohli, LWT – Food Sci. Tech. 2012, 48, 237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xntlaltr8%3D&md5=428ac0176e1adacf744000f045745053CAS |

[23]  H. Marzoug, M. Romdhane, A. Lebrihi, F. Mathieu, F. Couderc, M. Abderraba, M. Khouja, J. Bouajila, Molecules 2011, 16, 1695.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  A. Elaissi, Z. Rouis, N. Salem, S. Mabrouk, Y. Salem, K. Salah, M. Aouni, F. Farhat, R. Chemli, F. Harzallah-Skhiri, M. Khouja, BMC Complement. Altern. Med. 2012, 12, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslehs73M&md5=ab3d1ff72d4125c12d07e4bb3600d26bCAS |

[25]  H. Fadel, F. Marx, A. El-Sawy, A. El-Ghorab, Z. Lebensm. Unters. Forsch. A. 1999, 208, 212.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVCksr8%3D&md5=eafccdb723f2e5a709080f896740f3f9CAS |

[26]  F. Wang, J. Deng, C. Schal, Y. Lou, G. Zhou, B. Ye, X. Yin, Z. Xu, L. Shen, Sci. Rep. 2016, 6, 32666.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVOqsr%2FM&md5=bd43205a8843446faf69d05ee6b48da9CAS |

[27]  A. Lucia, L. Juan, E. Zerba, L. Harrand, M. Marcó, H. Masuh, Parasitol. Res. 2012, 110, 1675.
         | Crossref | GoogleScholarGoogle Scholar |