Enhancing the Magnetic–Luminescent Properties of Fe3O4@Y2O3:Eu3+ Core–Shell Bifunctional Particles Using Li+ Doping
Hong Zhang A , Le Wang A C , Tuo Wu A , Rubiao Chen A , Dong Luo A and Yanghui Li A BA College of Optics and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
B State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China.
C Corresponding author. Email: calla@cjlu.edu.cn
Australian Journal of Chemistry 70(8) 896-901 https://doi.org/10.1071/CH17038
Submitted: 17 January 2017 Accepted: 13 March 2017 Published: 13 April 2017
Abstract
Magnetic–luminescent nanoparticles are now attracting great attention in biochemistry and biomedicine for their promising bifunctional characteristics. In this work, we propose a strategy of Li+ doping to enhance both the luminescent and magnetic properties of Fe3O4@Y2O3:Eu3+ core–shell particles. A comprehensive investigation of phase assembly, microscopic morphology, luminescence, and magnetic characteristics of the bifunctional particles was carried out. The core–shell structured particles have a spherical morphology and the agglomerated particle size is ~1 μm in diameter. Under 254 nm excitation, the co-doped sample (5 mol-% Li+) with a dominant emission peak at 612 nm, exhibits luminescence 2.35 times more intense than the undoped sample (0 mol-% Li+). Li+ doping also leads to an improved saturation magnetisation, which was 2.41 times greater than the undoped sample.
References
[1] (a) J. M. Shen, L. Xu, Y. Lu, H. M. Cao, Z. G. Xu, Int. J. Pharm. 2012, 427, 400.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFWrtLs%3D&md5=4e17e9aa30414d6cb4f01ed8645a15eaCAS |
(b) J. Ma, Q. Fan, L. Wang, N. Jia, Z. Gu, H. Shen, Talanta 2010, 81, 1162.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z. Xue, Z. Yi, X. Li, Y. Li, M. Jiang, H. Liu, S. Zeng, Biomaterials 2017, 115, 90.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. Huang, Y. Chen, B. Liu, F. He, P. A. Ma, X. Deng, Z. Cheng, J. Lin, J. Solid State Chem. 2015, 229, 322.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. Li, Y. Song, C. Liu, X. Li, G. Zhou, Y. Fan, Mater. Lett. 2014, 114, 132.
| Crossref | GoogleScholarGoogle Scholar |
[2] P. Wang, X. Wang, S. Yu, Y. Zou, J. Wang, Z. Chen, N. S. Alharbi, A. Alsaedi, T. Hayat, Y. Chen, X. Wang, Chem. Eng. J. 2016, 306, 280.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1GhsLbM&md5=ca93e9abc1fed15d630d6177235c434bCAS |
[3] (a) P. Liu, C. Zhang, X. Liu, P. Cui, Appl. Surf. Sci. 2016, 368, 122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFCmurk%3D&md5=a622029cb91ea731001cbe7a377cc952CAS |
(b) A. Kurutos, I. Crnolatac, I. Orehovec, N. Gadjev, I. Piantanida, T. Deligeorgiev, J. Lumin. 2016, 174, 70.
| Crossref | GoogleScholarGoogle Scholar |
[4] T. Wu, H. Y. Pan, R. B. Chen, D. Luo, H. Zhang, Y. Shen, Y. H. Li, L. Wang, J. Rare Earths 2016, 34, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xot1antA%3D%3D&md5=d55b76e532421abfad0f44de0f9630faCAS |
[5] A. Erdman, P. Kulpinski, T. Grzyb, S. Lis, J. Lumin. 2015, 169, 520.
| Crossref | GoogleScholarGoogle Scholar |
[6] Q. Li, L. Tong, X. Chen, J. Shi, X. Ren, H. Yang, J. Alloys Compd. 2013, 580, 533.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVGju73E&md5=d68d2ad32eb487fa53066c7e946b700bCAS |
[7] P. Lu, J. L. Zhang, Y. L. Liu, D. H. Sun, G. X. Liu, G. Y. Hong, J. Z. Ni, Talanta 2010, 82, 450.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosV2msL4%3D&md5=cd4e8c51923d11ef24f6802a177f995aCAS |
[8] P. Yang, Z. Quan, Z. Hou, C. Li, X. Kang, Z. Cheng, J. Lin, Biomaterials 2009, 30, 4786.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Cis70%3D&md5=5bd3ca70a182eff825f5e8cf0b772b0dCAS |
[9] (a) Z. Y. Ma, D. Dosev, M. Nichkova, S. J. Gee, B. D. Hammock, I. M. Kennedy, J. Mater. Chem. 2009, 19, 4695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVaju78%3D&md5=34be2bfbe5fb1c1d61d47714077a43dfCAS |
(b) G. S. Gowd, M. K. Patra, M. Mathew, A. Shukla, S. Songara, S. R. Vadera, N. Kumar, Opt. Mater. 2013, 35, 1685.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. Liu, H. Peng, S. Fan, X. Dong, J. Wang, Acta Chim. Sin. 2011, 69, 1081.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) H. Shi, X. Y. Zhang, W. L. Dong, X. Y. Mi, N. L. Wang, Y. Li, H. W. Liu, Chin. Phys. B 2016, 25, 047802.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. Sun, C. Qian, C. Liao, X. Wang, C. Yan, Solid State Commun. 2001, 119, 393.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. Liao, L. Y. Shi, H. Jia, X. J. Yu, D. L. Jin, L. C. Wang, Inorg. Mater. 2010, 46, 1325.
| Crossref | GoogleScholarGoogle Scholar |
[11] H. H. T. Vu, T. S. Atabaev, N. D. Nguyen, Y. H. Hwang, H. K. Kim, J. Sol-Gel Sci. Technol. 2014, 71, 391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotValt7o%3D&md5=a28c7977971b5881a1adb8c0f8602318CAS |
[12] J. G. Li, X. Li, X. Sun, T. Ishigaki, J. Phys. Chem. C 2008, 112, 11707.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVGruro%3D&md5=fed3f0c47e2791ddbcc8b53daef7333cCAS |
[13] D. Dosev, B. Guo, I. M. Kennedy, J. Aerosol Sci. 2006, 37, 402.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs12ht7w%3D&md5=849782e1df7b27139ebc0c5c43b01d99CAS |
[14] Q. Li, X. Ren, L. Tong, X. Chen, H. Ding, H. Yang, Dyes Pigments 2014, 107, 161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXns1WmtLk%3D&md5=cfc9549d7ab44ece1ce5501f05dc3653CAS |
[15] G. Liu, G. Hong, D. Sun, Powder Technol. 2004, 145, 149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFSgtbg%3D&md5=0831fb5b173942f3e7261ee5c2edb572CAS |
[16] J. G. Li, Y. Sakka, Q. Zhu, X. Li, X. Sun, Acta Mater. 2011, 59, 3688.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslCjsLk%3D&md5=96f3fc2a199ab3a22680c745a796b52dCAS |
[17] (a) L. Wang, H. Zhang, X. J. Wang, B. Dierre, T. Suehiro, T. Takeda, N. Hirosaki, R. J. Xie, Phys. Chem. Chem. Phys. 2015, 17, 15797.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotFCmtLw%3D&md5=856310b7b766ad63101f97198dbb9e63CAS |
(b) V. Bachmann, T. Jüstel, A. Meijerink, C. Rondaa, P. J. Schmidta, J. Lumin. 2006, 121, 441.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. J. Weber, R. R. Monchamp, J. Appl. Phys. 1973, 44, 5495.
| Crossref | GoogleScholarGoogle Scholar |
[18] R. S. Ukare, G. D. Zade, B. D. P. Raju, S. J. Dhoble, Optik 2016, 127, 1871.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVKru7zN&md5=5128694ca8dba131583613db214df976CAS |
[19] T. Wu, H. Pan, R. Chen, D. Luo, H. Zhang, Y. Shen, B. Lu, J. Huang, Y. Li, L. Wang, J. Alloys Compd. 2016, 666, 507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitV2mu7w%3D&md5=a5b25d7466d732efcb9e6a40c055f9efCAS |