Construction of Z-Scheme Bi2WO6/g-C3N4 Heterojunction Photocatalysts with Enhanced Visible-Light Photocatalytic Activity
Chunjiao Zhang A , Rong Li B , Yu Zhao A C and Mei Wang AA Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China.
B Women and Children Hospital of Qingdao City, Qingdao, Shandong 266034, China.
C Corresponding author. Email: rain@ouc.edu.cn
Australian Journal of Chemistry 70(8) 889-895 https://doi.org/10.1071/CH16507
Submitted: 12 September 2016 Accepted: 8 March 2017 Published: 5 April 2017
Abstract
Highly efficient visible-light-induced Z-scheme Bi2WO6/g-C3N4 heterojunction photocatalysts were synthesised by means of a simple hydrothermal method. The prepared Bi2WO6/g-C3N4 composite materials were characterised by means of X-ray diffraction, UV-vis diffuse reflectance spectroscopy, scanning electron microscopy, transmission electron microscopy, and photoluminescence. The photocatalytic activity of the Bi2WO6/g-C3N4 composite materials was determined through the degradation of Rhodamine B (RhB) solution as a target pollutant. The results of the experiment revealed that the active species O2•− and h+ play a crucial role in the scavenging system. The Bi2WO6/g-C3N4 composites showed an obviously improved photocatalytic performance compared with pure g-C3N4 and Bi2WO6 in the RhB degradation under visible light irradiation. The 10 wt-% Bi2WO6/g-C3N4 displayed the highest photocatalytic activity, and could completely degrade RhB within 75 min. It gave a reaction rate constant of 0.0439 min−1, which is 5.22 and 2.58 times higher than pure Bi2WO6 and g-C3N4, respectively. The intimate contact interface between the Bi2WO6 and g-C3N4 leads to effective separation of charge carriers and hinders the recombination efficiency of electrons and holes. Hence the photocatalytic activities of the Bi2WO6/g-C3N4 composite materials are significantly improved.
References
[1] U. I. Gaya, A. H. Abdullah, J. Photochem. Photobiol. Chem. 2008, 9, 1.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVSgtLY%3D&md5=370069692ca4f21ea428c3e6befe0281CAS |
[2] A. Kubacka, M. Fernandez-García, G. Colon, Chem. Rev. 2012, 112, 1555.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2ktrvE&md5=1f5057afb48f51874216bf648152e944CAS |
[3] J. Andersen, M. Pelaez, L. Guay, Z. H. Zhang, K. O’Shea, D. D. Dionysiou, J. Hazard. Mater. 2013, 260, 569.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ylu7fE&md5=2b662d1366df7b14fc13b4e5eea9de15CAS |
[4] X. Xiao, R. P. Hu, C. Liu, C. L. Xing, X. X. Zuo, J. M. Nan, L. S. Wang, Chem. Eng. J. 2013, 225, 790.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFGntr0%3D&md5=9c7533f7d7195721e7b95b560a0fe646CAS |
[5] S. Shenawi-Khalil, V. Uvarov, E. Menes, I. Popov, Y. Sasson, Appl. Catal. A 2012, 413–414, 1.
| Crossref | GoogleScholarGoogle Scholar |
[6] J. L. Zhai, H. W. Yu, H. Y. Li, L. Sun, K. X. Zhang, H. J. Yang, Appl. Surf. Sci. 2015, 344, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsFGlu7s%3D&md5=926fc76174998c222eef386ed97a85b6CAS |
[7] Y. Fu, C. Chang, P. Chen, X. L. Chu, L. Y. Zhu, J. Hazard. Mater. 2013, 254–255, 185.
| Crossref | GoogleScholarGoogle Scholar |
[8] W. L. Dai, H. Xu, J. J. Yu, X. Hu, X. B. Luo, X. M. Tu, L. X. Yang, Appl. Surf. Sci. 2015, 356, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtleksLjJ&md5=9d5876ddb48fb468a397a2f2ff109790CAS |
[9] J. M. Hu, W. D. Cheng, S. P. Huang, D. S. Wu, Z. Xie, Appl. Phys. Lett. 2006, 89, 261117.
| Crossref | GoogleScholarGoogle Scholar |
[10] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlesson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWrsL7J&md5=df7bebc960ce7bc2d2031273fc7ec227CAS |
[11] S. Girish Kumar, K. S. R. Koteswara Rao, Appl. Surf. Sci. 2015, 355, 939.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFOis7jK&md5=431ff27bf3257de4d0551acce0b7d31aCAS |
[12] F. Amano, A. Yamakata, K. Nogami, M. Osawa, B. Ohtani, J. Am. Chem. Soc. 2008, 130, 17650.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOjsLvP&md5=b53cc63d69a0393b814c6bef6dd3b8f7CAS |
[13] R. A. He, S. W. Cao, P. Zhou, J. G. Yu, Chin. J. Catal. 2014, 35, 989.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFyqsLnM&md5=18511c3806e52e587f4e665fddad17acCAS |
[14] X. L. Yang, F. F. Qian, G. J. Zou, M. L. Li, J. R. Lu, Y. M. Li, M. T. Bao, Appl. Catal. B 2016, 193, 22.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmtFChtr8%3D&md5=6a80249f9a8bebff2a25ce01e36c5b07CAS |
[15] Y. L. Tian, B. B. Chang, J. L. Lu, J. Fu, F. N. Xi, X. P. Dong, ACS Appl. Mater. Interfaces 2013, 5, 7079.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2msbjM&md5=005ceb05fb95f34c6531c2eb99ffd780CAS |
[16] Y. H. Jiang, F. Li, Y. Liu, Y. Z. Hong, P. P. Liu, L. Ni, J. Ind. Eng. Chem. 2016, 41, 130.
| Crossref | GoogleScholarGoogle Scholar |
[17] P. Niu, L. L. Zhang, G. Liu, H. M. Cheng, Adv. Funct. Mater. 2012, 22, 4763.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1Oks7Y%3D&md5=a8cfab86769b43c4539a94dcc54a6683CAS |
[18] M. Tahir, C. B. Cao, N. Mahmood, F. K. Butt, A. Mahmood, F. Idrees, S. Hussain, M. Tanveer, Z. Ali, I. Aslam, ACS Appl. Mater. Interfaces 2014, 6, 1258.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOntr%2FI&md5=98cbbbbdf9425ff35ebee8e3c6a6f969CAS |
[19] Y. Z. Hong, Y. H. Jiang, C. S. Li, W. Q. Fan, X. Yan, M. Yan, W. D. Shi, Appl. Catal. B 2016, 180, 663.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Ontb3O&md5=488707df9ea5673585c9165f31598601CAS |
[20] L. Xu, X. Y. Yang, Z. Zhai, W. H. Hou, CrystEngComm 2011, 13, 7267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFahsrnF&md5=97941fd182064165ae1c948c632b838cCAS |
[21] L. Ge, C. C. Han, J. Liu, Appl. Catal. B 2011, 108–109, 100.
| Crossref | GoogleScholarGoogle Scholar |
[22] S. L. Lin, L. Liu, J. S. Hu, Y. H. Liang, W. Q. Cui, Appl. Surf. Sci. 2015, 324, 20.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVersbrF&md5=102f2422e05f867da7e423ffa4751a82CAS |
[23] Y. H. Liang, S. L. Lin, L. Liu, J. S. Hu, W. Q. Cui, Appl. Surf. Sci. 2015, 164, 192.
| 1:CAS:528:DC%2BC2cXhsFynsbnE&md5=7352b1181da79b9533fa14b194600f65CAS |
[24] Y. H. Zhang, Y. J. Xu, RSC Adv. 2014, 4, 2904.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFCrtLnN&md5=85d28764e3d4d1d7ae00e09aeedba29aCAS |
[25] S. F. Chen, Y. F. Hu, S. G. Meng, X. L. Fu, Appl. Catal. B 2014, 150–151, 564.
| Crossref | GoogleScholarGoogle Scholar |
[26] J. Zhai, H. Yu, H. Li, L. Sun, K. Zhang, H. Yang, Appl. Surf. Sci. 2015, 344, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsFGlu7s%3D&md5=926fc76174998c222eef386ed97a85b6CAS |
[27] N. Liang, M. Wang, L. Jin, S. S. Huang, W. L. Chen, M. Xu, Q. Q. He, J. T. Zai, N. H. Fang, X. F. Qian, ACS Appl. Mater. Interfaces 2014, 6, 11698.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVCru73M&md5=d02ecde6e6c6bea551394601deffb9f7CAS |