Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Theoretical Probe for Structures, Metal–Metal Bonding, and Electronic Spectra of Paramagnetic Tetrapyrrolic RuII Complex

Jin-Yu Lv A B , Yuan-Ru Guo A C and Qing-Jiang Pan B C
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Bio-based Material Science and Technology of Education Ministry, College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.

B Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.

C Corresponding authors. Email: guoyrnefu@163.com; panqjitc@163.com

Australian Journal of Chemistry 70(7) 797-805 https://doi.org/10.1071/CH16660
Submitted: 24 November 2016  Accepted: 13 January 2017   Published: 8 February 2017

Abstract

Dimeric complexes (RuIIPz)2 have been investigated using density functional theory (DFT), where Pz is a porphyrazine ligand that features a 16-atom, 18-π-electron cyclic polyene aromatic skeleton. Structural optimizations in various configurations and spin states indicate that (RuPz)2 favours a Pz–Pz staggered conformer over an eclipsed one; the paramagnetic triplet state with the staggered configuration is found as the global ground state. This agrees with experimental magnetic results of (RuOEPor)2 (OEPor = octaethylporphyrin) and (RuPc)2 (Pc = phthalocyanine). The Ru–Ru bond length was optimized to be 2.38 Å, close to the experimental bond length of 2.40–2.41 Å. The Ru2 doubly bonded nature has been evidenced by the Ru–Ru stretching vibrational frequency of 202 cm–1, bond energy of 30.7 kcal mol–1, and electronic arrangement of σ2π4(nonbonding-δ)4(π*)2. Further confirmation was obtained from high-level wave function theory calculations (complete active space self-consistent field and n-electron valence state second-order perturbation theory). Associated with the solvation of the explicit pyridine accounting for the first coordination sphere and the implicit continuum model for the long-range interaction, the electronic spectra of tetrapyrrolic ruthenium complex were calculated at the time-dependent DFT level.


References

[1]  H. Bertagnolli, V. Krishnan, T. E. Youssef, M. Hanack, J. Porphyrins Phthalocyanines 2011, 15, 598.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1SrsL%2FJ&md5=5391f020736916ec6a5d533ea28a6ab4CAS |

[2]  J. A. Bertrand, F. A. Cotton, W. A. Dollase, J. Am. Chem. Soc. 1963, 85, 1349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXitVaitw%3D%3D&md5=b85d46f2403259fe921d36639f9071d3CAS |

[3]  J. E. Fergusson, B. R. Penfold, W. T. Robinson, Nature 1964, 201, 181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXms1SjsA%3D%3D&md5=a955dac0fde4abc56c9e83cc77d84caaCAS |

[4]  L. Alagna, A. Capobianchi, M. P. Casaletto, G. Mattogno, A. M. Paoletti, G. Pennesi, G. Rossi, J. Mater. Chem. 2001, 11, 1928.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslSksLg%3D&md5=a4451049637f439114183dd17f3f326eCAS |

[5]  A. Capobianchi, A. M. Paoletti, G. Pennesi, G. Rossi, R. Caminiti, C. Ercolani, Inorg. Chem. 1994, 33, 4635.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFCjtbo%3D&md5=36866136cec04a6e6d37961e6a7a8597CAS |

[6]  F. A. Cotton, X. Feng, J. Am. Chem. Soc. 1997, 119, 7514.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvVeqtbs%3D&md5=142fb64fae63e07820971c89c82f0927CAS |

[7]  R. Caminiti, M. P. Donzello, C. Ercolani, C. Sadun, Inorg. Chem. 1998, 37, 4210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslOgt7o%3D&md5=2b7755df342563efb79635a1e751c9e1CAS |

[8]  C. M. Zall, L. J. Clouston, V. G. Young, K. Y. Ding, H. J. Kim, D. Zherebetskyy, Y. S. Chen, E. Bill, L. Gagliardi, C. C. Lu, Inorg. Chem. 2013, 52, 9216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtF2qs7rJ&md5=91a27ad88476855cc72f17807c4ca429CAS |

[9]  J. F. Myers, G. W. R. Canham, A. B. P. Lever, Inorg. Chem. 1975, 14, 461.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhtVGktro%3D&md5=f62037d7aee284e5a65bf0cc8dead175CAS |

[10]  H. Huckstadt, C. Bruhn, H. Homborg, J. Porphyrins Phthalocyanines 1997, 1, 367.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVWjtg%3D%3D&md5=0aa7690b424f6254a85adb2ef99dd98dCAS |

[11]  R. J. Eisenhart, R. K. Carlson, L. J. Clouston, V. G. Young, Y. S. Chen, E. Bill, L. Gagliardi, C. C. Lu, Inorg. Chem. 2015, 54, 11330.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFGjtb7N&md5=5f9e6992d1e9435d470251285dd8783aCAS |

[12]  Y. Chi, K. L. Wu, T. C. Wei, Chem. – Asian J. 2015, 10, 1098.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvVShsbo%3D&md5=2c492e538a5f3fb8eed7756d3a265489CAS |

[13]  Z. Guo, X. Guan, J.-S. Huang, W.-M. Tsui, Z. Lin, C.-M. Che, Chem. – Eur. J. 2013, 19, 11320.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVaktbjN&md5=2e7ee5c6abdaef63255cefe7056bc965CAS |

[14]  S. K. Y. Leung, J. S. Huang, J. L. Liang, C. M. Che, Z. Y. Zhou, Angew. Chem., Int. Ed. 2003, 42, 340.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWqsbo%3D&md5=1d50d0bfcdc5932c09199425d31d6e44CAS |

[15]  E. Stulz, M. Maue, N. Feeder, S. J. Teat, Y.-F. Ng, A. D. Bond, S. L. Darling, J. K. M. Sanders, Inorg. Chem. 2002, 41, 5255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVyktb0%3D&md5=c718536bc5255b7fbaf0e5ccc65887f6CAS |

[16]  A. Weber, T. S. Ertel, U. Reinohl, M. Feth, H. Bertagnolli, M. Leuze, M. Hanack, Eur. J. Inorg. Chem. 2001, 679.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1SisLo%3D&md5=8aebdd31222620563f23c409e7ba7ca8CAS |

[17]  A. J. Bailey, B. R. James, Chem. Commun. 1996, 2343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmsl2hurg%3D&md5=36e3784f1148f91be9bb2da77ab74e63CAS |

[18]  A. Weber, T. S. Ertel, U. Reinohl, H. Bertagnolli, M. Leuze, M. Hees, M. Hanack, Eur. J. Inorg. Chem. 2000, 2289.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFyis7c%3D&md5=c3fa92bd0a31e539ff7dd587e4067ba8CAS |

[19]  J. P. Collman, C. E. Barnes, P. N. Swepston, J. A. Ibers, J. Am. Chem. Soc. 1984, 106, 3500.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXit1Sms7g%3D&md5=94162d15cf493c8b9c12b1d0f893b0dcCAS |

[20]  A. S. Dudnik, A. V. Ivanov, L. G. Tomilova, N. S. Zefirov, Russ. J. Coord. Chem. 2004, 30, 110.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVGqur0%3D&md5=e218b555f4c8e3930893f547d66a7252CAS |

[21]  K. Durr, M. Hanack, J. Porphyrins Phthalocyanines 1999, 3, 224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFGrsb4%3D&md5=1c745a27a4d5a837d02a5889e8c9fb55CAS |

[22]  J. P. Collman, C. E. Barnes, L. K. Woo, Proc. Natl. Acad. Sci. USA 1983, 80, 7684.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtlWgtL8%3D&md5=6d9e6236d5ed5676a02573d1545feb63CAS |

[23]  R. Caminiti, A. Capobianchi, P. Marovino, A. M. Paoletti, G. Padeletti, G. Pennesi, G. Rossi, Thin Solid Films 2001, 382, 74.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlSktL4%3D&md5=ff46cda738883ffe39c1fa3b7d9bd5e8CAS |

[24]  M. K. R. Fischer, I. Lopez-Duarte, M. M. Wienk, M. V. Martinez-Diaz, R. A. J. Janssen, P. Baeuerle, T. Torres, J. Am. Chem. Soc. 2009, 131, 8669.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFamtrw%3D&md5=2791570ee75bc547fecadf0d12ca2f75CAS |

[25]  A. Capobianchi, M. Tucci, Thin Solid Films 2004, 451–452, 33.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  J. S. Reboucas, B. R. James, Inorg. Chem. 2013, 52, 1084.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktVygtg%3D%3D&md5=a941fb184e4fb05d3e500dc77b691e75CAS |

[27]  A. Generosi, B. Paci, V. R. Albertini, R. Generosi, A. M. Paoletti, G. Pennesi, G. Rossi, M. Fosca, R. Caminiti, Sens. Actuators, B 2008, 134, 396.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFers7fF&md5=6597b99bb601125eb5a2321dcefd3765CAS |

[28]  A. Generosi, V. R. Albertini, G. Rossi, G. Pennesi, R. Caminiti, J. Phys. Chem. B 2003, 107, 575.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFCnsbk%3D&md5=adde5b9434fc78cfa5910577dc1a95f8CAS |

[29]  L. Alagna, A. Capobianchi, A. M. Paoletti, G. Pennesi, G. Rossi, M. P. Casaletto, A. Generosi, B. Paci, V. R. Albertini, Thin Solid Films 2006, 515, 2748.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WqsbjL&md5=e1089d6bc6f4900b96b346d36ffe2f23CAS |

[30]  A. M. Paoletti, G. Pennesi, G. Rossi, A. Generosi, B. Paci, V. R. Albertini, Sensors 2009, 9, 5277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVKms7Y%3D&md5=78772db229734f4a8330c1b560f61b92CAS |

[31]  A. Generosi, B. Paci, V. R. Albertini, R. Generosi, P. Perfetti, A. M. Paoletti, G. Pennesi, G. Rossi, R. Caminiti, J. Phys. Chem. C 2007, 111, 12045.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVKhu70%3D&md5=ee9c402619d649ab2440b1dae2cc0411CAS |

[32]  A. Capobianchi, G. Pennesi, A. M. Paoletti, G. Rossi, R. Caminiti, C. Sadun, C. Ercolani, Inorg. Chem. 1996, 35, 4643.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktFOrsbk%3D&md5=bee80f30cb4d9ef1ea514a2bb978fdecCAS |

[33]  L. Alagna, A. Capobianchi, P. Marovino, A. M. Paoletti, G. Pennesi, T. Prosperi, G. Rossi, Inorg. Chem. 1999, 38, 3688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlKru7w%3D&md5=0fa08baac0a94a02f1d0cfb724381a55CAS |

[34]  F. A. Cotton, X. Feng, Inorg. Chem. 1989, 28, 1180.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsVWku7Y%3D&md5=cc600b731933f908e46db5380ffe96c6CAS |

[35]  Q. J. Pan, Y. R. Guo, H. X. Zhang, Organometallics 2010, 29, 3261.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosleht7g%3D&md5=f60793720b01217c3b7f635c75b35694CAS |

[36]  Q. J. Pan, H. X. Zhang, X. Zhou, H. G. Fu, H. T. Yu, J. Phys. Chem. A 2007, 111, 287.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlektLrE&md5=b01d7f5880b980ffd63461cd63a648c3CAS |

[37]  Q. J. Pan, Y. R. Guo, L. Li, S. O. Odoh, H. G. Fu, H. X. Zhang, Phys. Chem. Chem. Phys. 2011, 13, 14481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslOktrY%3D&md5=6b5fa5d1918d93e967c6afbd7fa1a972CAS |

[38]  X. Q. Gao, Q. J. Pan, L. Li, Y. R. Guo, H. X. Zhang, H. G. Fu, Chem. Phys. Lett. 2011, 506, 146.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslKntbY%3D&md5=785637b66e31cac2b97b6bc8420e377bCAS |

[39]  M. J. Zhang, J. Y. Lv, Q. J. Pan, Y. R. Guo, Theor. Chem. Acc. 2014, 133, 1582.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  M. J. Zhang, Q. J. Pan, Y. R. Guo, H. X. Zhang, Acta Chim. Sin. 2014, 72, 697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFyrtb3F&md5=6615a7259d2bbae19aa791a4c5f219e2CAS |

[41]  J. Yao, X. J. Zheng, Q. J. Pan, G. Schreckenbach, Inorg. Chem. 2015, 54, 5438.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotFWksb0%3D&md5=246c41869508549b964da5eede1dbe4dCAS |

[42]  D. M. Su, X. J. Zheng, G. Schreckenbach, Q. J. Pan, Organometallics 2015, 34, 5225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1Kgt7vK&md5=5e113da8b42ea75894726d13272921dfCAS |

[43]  D. A. Penchoff, B. E. Bursten, Inorg. Chim. Acta 2015, 424, 267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGru7bE&md5=ba7b0d75771f15a9ca17c4663ca93da9CAS |

[44]  J. S. Reboucas, B. R. James, Inorg. Chem. Commun. 2013, 30, 49.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlGlur8%3D&md5=1868b04b0603c7f5a52350aaf49e34a7CAS |

[45]  T. Swetha, S. Niveditha, K. Bhanuprakash, S. P. Singh, Electrochim. Acta 2015, 153, 343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVakt7rP&md5=980a47f5a1e18a24fe251de34e518095CAS |

[46]  C. M. Thomas, Comments Inorg. Chem. 2011, 32, 14.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1amtbvK&md5=e80c7e84453cb9f9c238fa5ab6b3f910CAS |

[47]  F. A. Cotton, X. Feng, J. Am. Chem. Soc. 1998, 120, 3387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit12ksLg%3D&md5=162f5a69d848a84bfeb0c8376d079d45CAS |

[48]  R. Mathialagan, S. Kuppuswamy, A. T. De Denko, M. W. Bezpalko, B. M. Foxman, C. M. Thomas, Inorg. Chem. 2013, 52, 701.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1Whsg%3D%3D&md5=38023cb66fda00125259e73d32b8d007CAS |

[49]  Y. Xie, H. F. Schaefer, R. B. King, J. Am. Chem. Soc. 2005, 127, 2818.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Ort74%3D&md5=ca124f27f30530b2b8a21259a56801baCAS |

[50]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D01 2009 (Gaussian, Inc.: Wallingford, CT).

[51]  W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht1SjtLk%3D&md5=e6ea6b4dc353ec4c5e860841ab7c3ba7CAS |

[52]  P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXht1SjtLY%3D&md5=c5f057dfddd372f1abf3a74ba1cb7e84CAS |

[53]  D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkt12ntLo%3D&md5=e2706497e64aa2278af6329ef8ae67d7CAS |

[54]  M. Dolg, H. Stoll, H. Preuss, R. M. Pitzer, J. Phys. Chem. 1993, 97, 5852.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXis1WitLw%3D&md5=ef74b025696a6e3583b528925df41e6dCAS |

[55]  A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, Chem. Phys. Lett. 1993, 208, 111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktlCmuro%3D&md5=a326d8356ac64798270e9438c7356defCAS |

[56]  L. E. Roy, P. J. Hay, R. L. Martin, J. Chem. Theory Comput. 2008, 4, 1029.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVGrs70%3D&md5=1f76d927187c24b0418506137c88821eCAS |

[57]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=cd069e9165ffddacc154f2d6ee26a63bCAS |

[58]  S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1alt7fM&md5=5c2f9a896eeecd0d637838e1d5f31cc5CAS |

[59]  S. Simon, M. Duran, J. J. Dannenberg, J. Chem. Phys. 1996, 105, 11024.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVCmuw%3D%3D&md5=6d94a99bd644e62f56ef41323ab97f89CAS |

[60]  E. Cances, B. Mennucci, J. Tomasi, J. Chem. Phys. 1997, 107, 3032.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsVOmtb8%3D&md5=37c599e75609b08d3c338250527d93deCAS |

[61]  M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett. 1996, 255, 327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsVOmtrw%3D&md5=9d896942742fb242a35c047ef73f2e26CAS |

[62]  S. Miertus, J. Tomasi, Chem. Phys. 1982, 65, 239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhsV2qtb8%3D&md5=73dc2fa9f6cd47774e4b5bae9b755d44CAS |

[63]  S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhsVKis7s%3D&md5=3ee8bac64fb1a7200e297139187856a6CAS |

[64]  M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys. 1998, 108, 4439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsV2js7w%3D&md5=bd2eed9b5b66a6ea9632980ed996b84eCAS |

[65]  R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFWltrs%3D&md5=b0335c7ecbbb3fd4ba3175827c6a513aCAS |

[66]  R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109, 8218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFygsLs%3D&md5=4e2f3f754873eef4b9c0a6621840a89fCAS |

[67]  H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 242.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Klt74%3D&md5=e2e2ae35e25c9a571d293e4393c0ceefCAS |

[68]  H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, MOLPRO, Version 20121: A Package of Ab Initio Programs 2012 (TGZ Molpro: Stuttgart).

[69]  P. J. Knowles, H.-J. Werner, Chem. Phys. Lett. 1985, 115, 259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhvFWnsb0%3D&md5=c59173e92ab08d9b47a059464f2e940aCAS |

[70]  H.-J. Werner, P. J. Knowles, J. Chem. Phys. 1985, 82, 5053.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktFWltLk%3D&md5=61420fe2e036fab9a2cf4e196bab94a3CAS |

[71]  C. Angeli, M. Pastore, R. Cimiraglia, Theor. Chem. Acc. 2007, 117, 743.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVWkt7w%3D&md5=9f264561b7a3088dbf3291f568f92466CAS |

[72]  C. Angeli, R. Cimiraglia, J.-P. Malrieu, J. Chem. Phys. 2002, 117, 9138.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1SnsLk%3D&md5=697f11f2b2de84255ac5c5a29d3f6da2CAS |

[73]  C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, J.-P. Malrieu, J. Chem. Phys. 2001, 114, 10252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1antro%3D&md5=526f28f8b8e5d9dba173d87190422339CAS |

[74]  R. Caminiti, M. P. Donzello, C. Ercolani, C. Sadun, Inorg. Chem. 1999, 38, 3027.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVKms78%3D&md5=98243a12a892d724ac3e63881e982cd8CAS |

[75]  H. Asahina, M. B. Zisk, B. Hedman, J. T. McDevitt, J. P. Collman, K. O. Hodgson, J. Chem. Soc. Chem. Commun. 1989, 1360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmt1Whur4%3D&md5=962eeff68095c7cf84bb98b4fea77330CAS |

[76]  H. Bertagnolli, A. Weber, W. Hörner, T. S. Ertel, U. Reinöhl, M. Hanack, M. Hees, R. Polley, Inorg. Chem. 1997, 36, 6397.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtFKgsg%3D%3D&md5=2fb9c6407703fc549c4275e26e29c073CAS |

[77]  B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan, S. Alvarez, Dalton Trans. 2008, 2832.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFKrurY%3D&md5=05d376bd50443983b1a5a289d1c65986CAS |

[78]  S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
         | Crossref | GoogleScholarGoogle Scholar |

[79]  F. R. Hopf, T. P. O’Brien, W. R. Scheidt, D. G. Whitten, J. Am. Chem. Soc. 1975, 97, 277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXnvVOntQ%3D%3D&md5=e419a69ba3257eac00c0ad8226bd1440CAS |

[80]  A. Antipas, J. W. Buchler, M. Gouterman, P. D. Smith, J. Am. Chem. Soc. 1978, 100, 3015.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXkslGjtbY%3D&md5=b8879700de54295f0fa80d5a8ae1f7f7CAS |

[81]  K. Kadish, D. Leggett, D. Chang, Inorg. Chem. 1982, 21, 3618.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XltlGmu7c%3D&md5=d22a5180cc883189fcdc591c37242038CAS |