Novel Dual BODIPY-Carbazole Conjugates with Various Linkers
Qiao Zong A B , Hongbin Zhao B C , Weinan Zhou B , Wentao Zhang B , Junxu Liao B C and Nianfa Yang A CA College of Chemistry, Xiangtan University, Xiangtan 411105, China.
B College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
C Corresponding authors. Email: zhaohbhanlf@163.com; liaojx83@126.com; nfyang@xtu.edu.cn
Australian Journal of Chemistry 70(7) 806-815 https://doi.org/10.1071/CH16704
Submitted: 11 December 2016 Accepted: 20 January 2017 Published: 27 February 2017
Abstract
Four dual BODIPY-carbazole conjugates (BDPa–d, BODIPY is 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene), with various π bridges, including none, phenyl, thiophene, and furan, were designed and synthesized. The results suggest that the π bridges have significant effect on the thermal, photophysical, and electrochemical properties of the conjugates. BDPc and BDPd, with a five-membered heterocycle as a π bridge possessing more coplanar molecular geometry, exhibit broader and red-shifted absorption with an obvious charge transfer shoulder peak, as well as red-shifted emission. UV-visible absorption spectroscopy and cyclic voltammetry results show that the extension of the π-conjugated system leads to a reduction in the optical gap with a decrease of the LUMO level. All conjugates display remarkable Stokes shifts (107–216 nm) and low fluorescence quantum yields. BDPc and BDPd, which essentially possess broad and intense absorption, and suitable HOMO–LUMO energy levels, are potential candidates for light-harvesting and photovoltaic applications.
References
[1] A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFeisbvF&md5=a4585765ac2c24a0c289389d3621449aCAS |
[2] G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem., Int. Ed. 2008, 47, 1184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1Gqs7w%3D&md5=a666fbae090205d59f392da0cd800b18CAS |
[3] M. Vincent, E. Beabout, R. Bennett, P. Hewavitharanage, Tetrahedron Lett. 2013, 54, 2050.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlKksrk%3D&md5=8dd68ed5fc635592eb1d0b48f69deb87CAS |
[4] Y. Wang, L. Chen, R. M. El-Shishtawy, S. G. Azizd, K. Müllen, Chem. Commun. 2014, 50, 11540.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlahtLzJ&md5=f73b33f9e14963ad18cec6070d056f71CAS |
[5] V. Leen, D. Miscoria, S. Yin, A. Filarowski, J. MolishoNgongo, M. Van der Auweraer, et al. J. Org. Chem. 2011, 76, 8168.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Wks7vF&md5=66eea90a7ad69f9fb52e98366f3dd271CAS |
[6] W. Qin, V. Leen, W. Dehaen, J. Cui, C. Xu, X. Tang, et al. J. Phys. Chem. C 2009, 113, 11731.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVentbs%3D&md5=947b9bb8ba76e6cf951d362efc20d7c4CAS |
[7] T. Kowada, H. Maeda, K. Kikuchi, Chem. Soc. Rev. 2015, 44, 4953.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltVaitrg%3D&md5=41f09c162128fbf1bc1d28d73e0b1df5CAS |
[8] L. Yuan, W. Lin, K. Zheng, L. He, W. Huang, Chem. Soc. Rev. 2013, 42, 622.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKmtbzN&md5=2db816bae64e6751d265b489a29fd6b4CAS |
[9] D. Su, J. Oh, S.-C. Lee, J. M. Lim, S. Sahu, X. Yu, et al. Chem. Sci. 2014, 5, 4812.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1GqurvP&md5=f45f8af09f5928bee6a2ecb404f782b0CAS |
[10] T. Papalia, G. Siracusano, I. Colao, A. Barattucci, M. C. Aversa, S. Serroni, et al. Dyes Pigm. 2014, 110, 67.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslCmt7Y%3D&md5=041d2610099d25aacdc358f39d5bdf72CAS |
[11] T. Papalia, R. Lappano, A. Barattucci, A. Pisano, G. Bruno, M. F. Santolla, et al. Org. Biomol. Chem. 2015, 13, 10437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsV2nu7%2FJ&md5=732d2f1c7f8492eec0d0c2867e676fb1CAS |
[12] A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, K. Burgess, Chem. Soc. Rev. 2013, 42, 77.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKrurbJ&md5=9272d894aadf5a7942c0bc2641ce9c5fCAS |
[13] C. Zhang, J. Zhao, S. Wu, Z. Wang, W. Wu, J. Ma, et al. J. Am. Chem. Soc. 2013, 135, 10566.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFamsLY%3D&md5=d0d31b6cf39805b7d54dc09e0fb4a3beCAS |
[14] Y. Yang, Q. Guo, H. Chen, Z. Zhou, Z. Guo, Z. Shen, Chem. Commun. 2013, 49, 3940.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVWrtbc%3D&md5=861e24b1b1f67a827fc0ecf85d4b7d9fCAS |
[15] S. Guo, L. Ma, J. Zhao, B. Kucukoz, A. Karatay, M. Hayvali, et al. Chem. Sci. 2014, 5, 489.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVSqtLfO&md5=8ff611577872d5949d8bf9024b980a41CAS |
[16] X.-F. Zhang, X. Yang, J. Phys. Chem. B 2013, 117, 5533.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlslagtL4%3D&md5=ba0d4338261a155ccd42d01bee2f6f5bCAS |
[17] A. B. Nepomnyashchii, A. J. Bard, Acc. Chem. Res. 2012, 45, 1844.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVSjsrc%3D&md5=7c0b7de80e152b13da2d82d0b555acbaCAS |
[18] D. Frath, J. Massue, G. Ulrich, R. Ziessel, Angew. Chem., Int. Ed. 2014, 53, 2290.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1ClsL0%3D&md5=2a467ab03513dcbdc304c50acfbd7df6CAS |
[19] S. Debnath, S. Singh, A. Bedi, K. Krishnamoorthy, S. S. Zade, J. Phys. Chem. C 2015, 119, 15859.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVaku7jI&md5=8d9bd5e3b60c0506f784ccc4aca7d67fCAS |
[20] R. Ziessel, G. Ulrich, A. Haefele, A. Harriman, J. Am. Chem. Soc. 2013, 135, 11330.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVCrs7zN&md5=a9f23874d8b840b171f2482b0a6bea6aCAS |
[21] J. Iehl, J.-F. Nierengarten, A. Harriman, T. Bura, R. Ziessel, J. Am. Chem. Soc. 2012, 134, 988.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2lsLnE&md5=29cc8a13aa807937eaa0cc165f3a4eafCAS |
[22] R. Ziessel, A. Harriman, Chem. Commun. 2011, 47, 611.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGrtLjN&md5=edffa8bf7f99b0871f10b9d79e5cdc6fCAS |
[23] A. Bessette, G. S. Hanan, Chem. Soc. Rev. 2014, 43, 3342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFGhtrY%3D&md5=f378f336fcdd411ffdad3333f052efa5CAS |
[24] T. Bura, N. Leclerc, S. Fall, P. Leveque, T. Heiser, P. Retailleau, et al. J. Am. Chem. Soc. 2012, 134, 17404.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVGqtb7F&md5=604282fb8fb0e1b14b72b8ffcd05d251CAS |
[25] T. Rousseau, A. Cravino, E. Ripaud, P. Leriche, S. Rihn, A. De Nicola, et al. Chem. Commun. 2010, 46, 5082.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlCmsr4%3D&md5=9eb6e707eb1f84f86ea1238901ba2fc4CAS |
[26] T. Jadhav, R. Misra, S. Biswasb, G. D. Sharma, Phys. Chem. Chem. Phys. 2015, 17, 26580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVymtLnF&md5=4762418c95320aaf24cda6914402ff61CAS |
[27] Y. Kubo, D. Eguchi, A. Matsumoto, R. Nishiyabu, H. Yakushiji, K. Shigaki, et al. J. Mater. Chem. A 2014, 2, 5204.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks1Slt78%3D&md5=66816ae2b1fb986b4e57819bae4a50a4CAS |
[28] A. M. Poe, A. M. Della Pelle, A. V. Subrahmanyam, W. White, G. Wantz, S. Thayumanavan, Chem. Commun. 2014, 50, 2913.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXis1ChtLg%3D&md5=4319db8f7424ade2ec34efa60d782470CAS |
[29] Y. Li, J. Ding, M. Day, Y. Tao, J. Lu, Chem. Mater. 2004, 16, 2165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsV2ku78%3D&md5=988a812c23560cdaa73afbc5be8d25a6CAS |
[30] M. S. Mudadu, A. N. Singh, R. P. Thummel, J. Org. Chem. 2008, 73, 6513.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1ygtLY%3D&md5=4d1996c36c423bbab9a50826fa096201CAS |
[31] D. Volyniuk, V. Cherpak, P. Stakhira, B. Minaev, G. Baryshnikov, M. Chapran, et al. J. Phys. Chem. C 2013, 117, 22538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFeltr7J&md5=37dccae8cddaaedf1f4bd25aae84362bCAS |
[32] V. Cherpak, P. Stakhira, B. Minaev, G. Baryshnikov, E. Stromylo, I. Helzhynskyy, et al. ACS Appl. Mater. Interfaces 2015, 7, 1219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFehtrzJ&md5=dc526ac5a53dffb8873cff346f4bc3fdCAS |
[33] V. Promarak, M. Ichikawa, T. Sudyoadsuk, S. Saengsuwan, S. Jungsuttiwong, T. Keawin, Thin Solid Films 2008, 516, 2881.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislGqt74%3D&md5=98f1cdc9618530722e3d19bcdf2bfbfdCAS |
[34] P. Moonsin, N. Prachumrak, R. Rattanawan, T. Keawin, S. Jungsuttiwong, T. Sudyoadsuk, et al. Chem. Commun. 2012, 48, 3382.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlKrsL0%3D&md5=90635c1af7af6a02e30a84d4d6497e90CAS |
[35] Y. Wang, D. Zhang, H. Zhou, J. Ding, Q. Chen, Y. Xiao, et al. J. Appl. Phys. 2010, 108, 033520.
| Crossref | GoogleScholarGoogle Scholar |
[36] X. Ma, X. Mao, S. Zhang, X. Huang, Y. Cheng, C. Zhu, Polym. Chem. 2013, 4, 520.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtl2msA%3D%3D&md5=20d60db9eb5b44153c6a11cdee52eff9CAS |
[37] J. Liao, Y. Xu, H. Zhao, Y. Wang, W. Zhang, F. Peng, et al. RSC Adv. 2015, 5, 86453.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1Wlt7nJ&md5=484a4f9f2eed4c8f8734b1a94cd4c5a1CAS |
[38] D. Volyniuk, V. Cherpak, P. Stakhira, B. Minaev, G. Baryshnikov, M. Chapran, et al. J. Phys. Chem. C 2013, 117, 22538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFeltr7J&md5=37dccae8cddaaedf1f4bd25aae84362bCAS |
[39] V. Cherpak, P. Stakhira, B. Minaev, G. Baryshnikov, E. Stromylo, I. Helzhynskyy, et al. ACS Appl. Mater. Interfaces 2015, 7, 1219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFehtrzJ&md5=dc526ac5a53dffb8873cff346f4bc3fdCAS |
[40] D. Ivanova, H. Gronemeyer, A. R. de Lera, ChemMedChem 2011, 6, 1518.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFKru70%3D&md5=b91b825f83e108bb025a2695b663900dCAS |
[41] L. Zhang, S. Zeng, L. Yin, C. Ji, K. Li, Y. Li, et al. New J. Chem. 2013, 37, 632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXis1Gis70%3D&md5=e6e5c376caa52831b78aceb054f990e7CAS |
[42] J. Liao, H. Zhao, Y. Xu, Z. Cai, Z. Peng, W. Zhang, et al. Dyes Pigm. 2016, 128, 131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitlCht78%3D&md5=ef5f46e386ec248d5cc2c3ff3f4ac452CAS |
[43] H. Zhao, J. Liao, J. Ning, Y. Xie, Y. Cao, L. Chen, et al. Adv. Synth. Catal. 2010, 352, 3083.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCjsLvK&md5=946ede6404b6fdc93da358e722c60253CAS |
[44] H. B. Zhao, B. Y. Wang, J. X. Liao, H. K. Wang, G. P. Tan, Tetrahedron Lett. 2013, 54, 6019.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsV2mu73N&md5=7ac891eff6633febd263dfd9edadeb96CAS |
[45] Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2ltb3M&md5=ccb3940c7ef1e66200007acc7a13add3CAS |
[46] L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R. A. Street, et al. Adv. Mater. 2013, 25, 6642.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsF2nurzK&md5=416805b63f657e390536af7e093d3bb4CAS |
[47] S. M. McAfee, J. M. Topple, I. G. Hill, G. C. Welch, J. Mater. Chem. A 2015, 3, 16393.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFSksrfJ&md5=5f034821c1600e529fe895cd4f4a7c64CAS |
[48] Y.-J. Hwang, B. A. E. Courtright, A. S. Ferreira, S. H. Tolbert, S. A. Jenekhe, Adv. Mater. 2015, 27, 4578.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFWjtLrJ&md5=905182ca8065933a69ac507e713c3eb3CAS |