Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Novel, Interpenetrating Metal–Organic Framework: Synthesis, Structure, and Luminescence Detection of Nitrobenzene

Peng-Fei Shi A B , Li-Xian Wang A and Zhao-Peng Yu A
+ Author Affiliations
- Author Affiliations

A Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.

B Corresponding author. Email: shipengfei913@163.com

Australian Journal of Chemistry 70(7) 792-796 https://doi.org/10.1071/CH16656
Submitted: 21 November 2016  Accepted: 10 January 2017   Published: 13 February 2017

Abstract

A 3D heterometal–organic framework {[TbZn(BPDC)2(HCOO)(H2O)3]·2H2O}n (1) was constructed from Tb3+ and Zn2+ as metal ions and 4,4′-dicarboxylate-2,2′-dipyridine (H2BPDC) as the ligand using a solvothermal method. Single-crystal X-ray diffraction analysis revealed that compound 1 is 2-fold interpenetrating. Thermogravimetric and solvent stability analyses demonstrated that compound 1 displayed good thermal and solvent stabilities. The luminescent explorations revealed that compound 1 exhibited highly sensitive and qualitative detection of nitrobenzene at the ppm level. To our knowledge, the present study reports for the first time the use of an interpenetrating heterometallic metal–organic framework as a luminescent probe for nitrobenzene.


References

[1]  X. L. Wang, C. Qin, E. B. Wang, Y. G. Li, Z. M. Su, L. Xu, L. Carlucci, Angew. Chem., Int. Ed. 2005, 44, 5824.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGlsLjO&md5=6cc9341a6316b03ec4d073e1cb9e457fCAS |

[2]  F. P. Huang, C. Yang, H. Y. Li, P. F. Yao, X. H. Qin, S. P. Yan, M. Kurmoo, Dalton Trans. 2015, 44, 6593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjsVGmt7w%3D&md5=ccd03bee64723bf1e23cef30e8d3d8e7CAS |

[3]  Y. N. Gong, D. C. Zhong, T. B. Lu, CrystEngComm 2016, 18, 2596.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjslKgtrs%3D&md5=a56585d79634883776f3e83610f088d0CAS |

[4]  S. B. Choi, H. Furukawa, H. J. Nam, D. Y. Jung, Y. H. Jhon, A. Walton, D. Book, M. O’Keeffe, O. M. Yaghi, J. Kim, Angew. Chem., Int. Ed. 2012, 51, 8791.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGgtrrO&md5=8b2a25fbc70ca163266ee8cc0555b9f6CAS |

[5]  H. Wu, J. Yang, Z. M. Su, S. R. Batten, J. F. Ma, J. Am. Chem. Soc. 2011, 133, 11406.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFyqu7g%3D&md5=cb2b0ba390efd61f0e81178719e5f4f1CAS |

[6]  C. Wang, L. J. Li, J. G. Bell, X. X. Lv, S. F. Tang, X. B. Zhao, K. M. Thomas, Chem. Mater. 2015, 27, 1502.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXit12lt7k%3D&md5=e43227bd66b5acb2993f847f8532edfcCAS |

[7]  Q. Chen, W. Xue, J. B. Lin, Y. S. Wei, Z. Yin, M. H. Zeng, M. Kurmoo, X. M. Chen, Chem. – Eur. J. 2016, 22, 12088.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFersbzO&md5=a64a7b7432cdb672af535d7bcc1d11f5CAS |

[8]  F. L. Geyer, F. Rominger, M. Vogtland, U. H. F. Bunz, Cryst. Growth Des. 2015, 15, 3539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpsFOjtrY%3D&md5=e34d9e818daadd500af6f7fae7c59b6cCAS |

[9]  B. Chen, Y. Yang, F. Zapata, G. Lin, G. Qian, E. B. Lobkovsky, Adv. Mater. 2007, 19, 1693.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFyiurg%3D&md5=11a0b033db5253422d0c5c98887cbd39CAS |

[10]  Y. Yu, J. P. Ma, Y. B. Dong, CrystEngComm. 2012, 14, 7157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCgu7rN&md5=0c9a2faa2c8b79b8106e4b71de6034b9CAS |

[11]  W. S. Liu, T. Q. Jiao, Y. Z. Li, Q. Z. Liu, M. Y. Tan, H. Wang, L. F. Wang, J. Am. Chem. Soc. 2004, 126, 2280.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVaktb8%3D&md5=0be733cd60e350281de745ae6f3c70bcCAS |

[12]  X. Zhou, H. Li, H. Xiao, L. Li, Q. Zhao, T. Yang, J. Zuo, W. Huang, Dalton Trans. 2013, 42, 5718.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXks1Ggsrg%3D&md5=b44f34f745b1d91404ac23a077e930deCAS |

[13]  B. Zhao, X. Y. Chen, P. Cheng, D. Z. Liao, S. P. Yan, Z. H. Jiang, J. Am. Chem. Soc. 2004, 126, 15394.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlSisrg%3D&md5=9d5be1a72fa6d34f80fbf9e468ee1a62CAS |

[14]  Y. L. Hou, H. Xu, R. R. Cheng, B. Zhao, Chem. Commun. 2015, 51, 6769.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1Ont7g%3D&md5=1b24a7faab3ffe8b2775af5650a1ddfbCAS |

[15]  Y. Cui, H. Xu, Y. F. Yue, Z. Y. Guo, J. C. Yu, Z. X. Chen, J. K. Gao, Y. Yang, G. D. Qian, B. L. Chen, J. Am. Chem. Soc. 2012, 134, 3979.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFShsLw%3D&md5=700cf564db54af3fbb885a3b557ac64cCAS |

[16]  J. H. Wang, M. Li, D. Li, Chem. Sci. 2013, 4, 1793.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlymsbo%3D&md5=f61f3a3711f5c54cddbe9fbfc25c2997CAS |

[17]  M. Guo, Z. M. Sun, J. Mater. Chem. 2012, 22, 15939.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVCjsrfK&md5=d089f9971c03b2951b27f583693ea9d7CAS |

[18]  D. Tian, Y. Li, R. Y. Chen, Z. Chang, G. Y. Wang, X. H. Bu, J. Mater. Chem. A 2014, 2, 1465.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVShs7%2FF&md5=4a197df50ff4244f1400feadf1a5088cCAS |

[19]  A. J. Lan, K. H. Li, H. H. Wu, D. H. Olson, T. J. Emge, W. Ki, M. Hong, J. Li, Angew. Chem., Int. Ed. 2009, 48, 2334.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkt1yqtb8%3D&md5=05929f0019e0592b8b113ccc25a8ed6cCAS |

[20]  A. K. Chaudhari, S. S. Nagarkar, B. Joarder, S. K. Ghosh, Cryst. Growth Des. 2013, 13, 3716.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVOmsL0%3D&md5=53780299f73cf1b84c19cde77272b549CAS |

[21]  X. Y. Wang, L. Gan, S. W. Zhang, S. Gao, Inorg. Chem. 2004, 43, 4615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFOhu7g%3D&md5=1cee5c5c07287302eac03417c17b7e35CAS |

[22]  D. K. Singha, S. Bhattacharya, P. Majee, S. K. Mondal, M. Kumara, P. Mahata, J. Mater. Chem. A 2014, 2, 20908.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVSqsLnJ&md5=b7287634d7f733d11844783a6d341c5aCAS |

[23]  P. Mahata, S. K. Mondal, D. K. Singha, P. Majee, Dalton Trans. 2017, 46, 301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvV2ns7zP&md5=bc9b322b23cad02cd7ac20f33ec1c56aCAS |

[24]  D. M. Chen, X. Z. Ma, W. Shi, P. Cheng, Cryst. Growth Des. 2015, 15, 3999.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVKit7nP&md5=d5c86a95059e363d2b6fe5fb007baf2fCAS |