Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Singlet Photoreactivity of 3-Methyl-2-phenyl-2H-azirine

Geethika K. Weragoda A , Anushree Das A , Sujan K. Sarkar A , H. Dushanee M. Sriyarathne A , Xiaoming Zhang A , Bruce S. Ault A and Anna D. Gudmundsdottir A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA.

B Corresponding author. Email: Anna.Gudmundsdottir@uc.edu

Australian Journal of Chemistry 70(4) 413-420 https://doi.org/10.1071/CH16604
Submitted: 26 October 2016  Accepted: 2 February 2017   Published: 2 March 2017

Abstract

Irradiation of 3-methyl-2-phenyl-2H-azirine (1) at 254 nm in argon matrices results in ylide 6. Similarly, laser flash photolysis (λ = 266 nm) of azirine 1 in acetonitrile yields ylide 6, which has a transient absorption with λmax at ~340 nm and a lifetime of 14 μs. Density functional theory calculations were preformed to support the characterisation of ylide 6 in solution and argon matrices. Irradiation of azirine 1 above 300 nm has previously been reported (J. Org. Chem. 2014, 79, 653) to yield triplet vinylnitrene in solution and ketenimine in cryogenic argon matrices. Thus, the photochemistry of azirine 1 is dependent on the irradiation wavelength.


References

[1]  A. F. Khlebnikov, M. S. Novikov, Tetrahedron 2013, 69, 3363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjs1CgsLY%3D&md5=75c60ecd7d7cc8fd20ae7d77e332f696CAS |

[2]  A. Padwa, Acc. Chem. Res. 1976, 9, 371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktlak&md5=4907cada2a0c3a4f6a3d7458e33b42e2CAS |

[3]  A. Padwa, J. Smolanoff, Tetrahedron Lett. 1974, 15, 33.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  A. Padwa, P. H. J. Carlsen, in Reactive Intermediates (Ed. R. A. Abramovitch) 1982, Vol. 2, pp. 55–119 (Springer: Boston, MA).

[5]  H. Inui, S. Murata, Chem. Commun. 2001, 1036.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1Grtrg%3D&md5=fbfdec90c1a9c34b54275e2018136078CAS |

[6]  H. Inui, S. Murata, J. Am. Chem. Soc. 2005, 127, 2628.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps12gtQ%3D%3D&md5=7af6336ba60db33c6d8b6b80709b118fCAS |

[7]  X. Zhang, S. K. Sarkar, G. K. Weragoda, S. Rajam, B. S. Ault, A. D. Gudmundsdottir, J. Org. Chem. 2014, 79, 653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOntLjL&md5=137a452f7654184535f5a38b57f5f3b9CAS |

[8]  F. Mueller, J. Mattay, in CRC Handbook of Organic Photochemistry and Photobiology (Eds W. M. Horspool, P.-S. Song) 1995, pp. 931–936 (CRC Press: Boca Raton, FL).

[9]  A. Padwa, R. J. Rosenthal, W. Dent, P. Filho, N. J. Turro, D. A. Hrovat, I. R. Gould, J. Org. Chem. 1984, 49, 3174.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXkvFSjur0%3D&md5=2d3643ccb484d5b3eccc6f7c3e107615CAS |

[10]  S. K. Sarkar, A. Sawai, K. Kanahara, C. Wentrup, M. Abe, A. D. Gudmundsdottir, J. Am. Chem. Soc. 2015, 137, 4207.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktlektbo%3D&md5=2322cb3c268ae367eb2b624bb51de9e7CAS |

[11]  S. K. Sarkar, O. Osisioma, W. L. Karney, M. Abe, A. D. Gudmundsdottir, J. Am. Chem. Soc. 2016, 138, 14905.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslCgsrjL&md5=9f4670083b2935e519f19092e6fed1daCAS |

[12]  R. A. A. U. Ranaweera, T. Scott, Q. Li, S. Rajam, A. Duncan, R. Li, A. Evans, C. Bohne, J. P. Toscano, B. S. Ault, A. D. Gudmundsdottir, J. Phys. Chem. A 2014, 118, 10433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVymt7jM&md5=090f266e8243603268cdf41523b4f9f8CAS |

[13]  S. Muthukrishnan, J. Sankaranarayanan, R. F. Klima, T. C. S. Pace, C. Bohne, A. D. Gudmundsdottir, Org. Lett. 2009, 11, 2345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1Glu7o%3D&md5=4df4009bd5eb3fa0aea16d94119de3a7CAS |

[14]  S. Rajam, R. S. Murthy, A. V. Jadhav, Q. Li, C. Keller, C. Carra, T. C. S. Pace, C. Bohne, B. S. Ault, A. D. Gudmundsdottir, J. Org. Chem. 2011, 76, 9934.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGkt7nM&md5=1590b9ca2a24cd2a8e97067c722cd90bCAS |

[15]  E. Albrecht, J. Mattay, S. Steenken, J. Am. Chem. Soc. 1997, 119, 11605.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1eqtLg%3D&md5=799c47ce984cbc7b59f391993e6d3f8eCAS |

[16]  J. B. Foresman, AE. Frisch, Exploring Chemistry with Electronic Structure Methods 1996 (Gaussian, Inc.: Pittsburgh, PA).

[17]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2009 (Gaussian, Inc.: Wallingford, CT).

[18]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=cd069e9165ffddacc154f2d6ee26a63bCAS |

[19]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=a4fd99b0357ab941e5799cbcb338fdb2CAS |

[20]  A. Admasu, A. D. Gudmundsdóttir, M. S. Platz, J. Phys. Chem. A 1997, 101, 3832.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXislKhtb8%3D&md5=4f39cfcb60d084e8ad10d0fef47dec4dCAS |

[21]  D. Bégué, C. Wentrup, J. Org. Chem. 2014, 79, 1418.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  C. M. Nunes, I. Reva, R. Fausto, D. Begue, C. Wentrup, Chem. Commun. 2015, 51, 14712.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Chsb3L&md5=9318d350aa31d9b71a709d02eab74448CAS |

[23]  P. Caramella, R. W. Gandour, J. A. Hall, C. G. Deville, K. N. Houk, J. Am. Chem. Soc. 1977, 99, 385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXovFShsg%3D%3D&md5=9b26b8e6cf90f4798477ae1772d77a75CAS |

[24]  P. Caramella, K. N. Houk, J. Am. Chem. Soc. 1976, 98, 6397.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkslGh&md5=311e0fc4f8e1bcc3a42c27a7d4c78609CAS |

[25]  D. Begue, C. Addicott, R. Burgard, P. Bednarek, E. Guille, I. Baraille, C. Wentrup, J. Org. Chem. 2014, 79, 2148.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisVWiu74%3D&md5=b5611248c1dbf05f684c8fadb43334bcCAS |

[26]  G. Bertrand, C. Wentrup, Angew Chem. 1994, 106, 549.[Angew. Chem., Int. Ed. Engl. 1994, 33, 527].
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktVyhsbg%3D&md5=cc5f70757176b7c91e546177e1cf6d54CAS |

[27]  B. Singh, A. Zweig, J. B. Gallivan, J. Am. Chem. Soc. 1972, 94, 1199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhtVKgtLs%3D&md5=57c802804caf423827c348d33c942f67CAS |

[28]  H. Inui, S. Murata, Chem. Lett. 2001, 30, 832.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  H. Inui, S. Murata, Chem. Phys. Lett. 2002, 359, 267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVemtLY%3D&md5=f9d5e994bf02c3a9e628535b0b8ed060CAS |

[30]  E. Orton, S. T. Collins, G. C. Pimentel, J. Phys. Chem. 1986, 90, 6139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlvFShtr0%3D&md5=0438aee9b3d2943fdd675f13ca27415cCAS |

[31]  C. M. Nunes, I. Reva, T. M. V. D. Pinho e Melo, R. Fausto, J. Org. Chem. 2012, 77, 8723.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlaisr3I&md5=c25e123407d85d18fce152378bcddadbCAS |

[32]  C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsVahtbk%3D&md5=75414cbbb9efa65d0bc8c177e808fb17CAS |

[33]  C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktl2rt78%3D&md5=66d8150cbec8983122fb3bca1de1305fCAS |

[34]  R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFWltrs%3D&md5=b0335c7ecbbb3fd4ba3175827c6a513aCAS |

[35]  R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109, 8218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFygsLs%3D&md5=4e2f3f754873eef4b9c0a6621840a89fCAS |

[36]  J. B. Foresman, M. Head-Gordon, J. A. Pople, M. J. Frisch, J. Phys. Chem. 1992, 96, 135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xks1GhsA%3D%3D&md5=5e3d57c79cfcccb77291e87401677108CAS |

[37]  B. S. Ault, J. Am. Chem. Soc. 1978, 100, 2426.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXitVSgurk%3D&md5=69729036e8de8cab754c2644160c9eaaCAS |

[38]  H. Bader, H. J. Hansen, Helv. Chim. Acta 1978, 61, 286.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXht1Wjt78%3D&md5=3ad99db23a1992a40f595f61f9403be2CAS |

[39]  V. Nair, T. G. George, V. Sheeba, A. Augustine, L. Balagopal, L. G. Nair, Synlett 2000, 1597.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1Ghtr8%3D&md5=e9eb70c52b87f69a2c23c965ca681fd3CAS |