Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Luminescent Functionalised Supramolecular Coordination Polymers Based on an Aromatic Carboxylic Acid Ligand for Sensing Hg2+ Ions

Xiaojun Sun A C , Ping Yang A , Guangfeng Hou B , Jinzhi Wei A , Xueliang Wang A , Doudou Yang A , Xin Zhang A , Hong Dong A and Fengming Zhang A C
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China.

B Engineering Research Center of Pesticide of Heilongjiang University, Heilongjiang University, Harbin 150080, China.

C Corresponding authors. Email: sunxiaojun@hrbust.edu.cn; zhangfm80@163.com

Australian Journal of Chemistry 70(7) 786-791 https://doi.org/10.1071/CH16600
Submitted: 24 October 2016  Accepted: 9 January 2017   Published: 13 February 2017

Abstract

Two luminescent functionalised supramolecular coordination polymers, namely, [Zn(TPDC-2CH3)(H2O)2]·H2O (1) and [Cd(TPDC-2CH3)(H2O)4]·H2O (2), were successfully synthesised by the reaction of 2′,5′-dimethyl-[1,1′:4′,1″-terphenyl]-4,4″-dicarboxylic acid (H2TPDC-2CH3) with Zn2+ and Cd2+ ions, respectively. X-Ray crystallographic analysis reveals that both compounds 1 and 2 exhibit fascinating 3D supramolecular networks, in which metal ions are linked by ligands to form a 1D chain which further extends to a 3D structure through the interaction of hydrogen bonding. The use of 1 and 2 as luminescent sensors for the optical detection of metal ions: Na+, K+, Hg2+, Ag+, Ca2+, Co2+, Ni2+, Mn2+, Cu2+, Zn2+, Cd2+, Pb2+, Mg2+, Al3+, Fe3+, Fe2+, In3+, Bi3+, and Cr3+ was carried out in aqueous solution, and the results indicated that compound 1 could effectively detect Hg2+ ions among various cations at room temperature, with a detection limit of 3.6 × 10−15 M.


References

[1]  X. Tang, H. Liu, B. Zou, D. Tian, H. Huang, Analyst 2012, 137, 309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SisLnP&md5=b09d70adcefaf04aa74b6f16328b3c66CAS |

[2]  J. S. Lee, C. A. Mirkin, Anal. Chem. 2008, 80, 6805.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVyrsL0%3D&md5=9f03e9f74f54dbcd50b2464f1bbba8d9CAS |

[3]  D. Li, A. Wieckowska, I. Willner, Angew. Chem. 2008, 47, 3927.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVeqs7s%3D&md5=36769fb1d5efce3e8660c2042fda31c5CAS |

[4]  M. Ghaedi, M. Reza Fathi, A. Shokrollahi, F. Shajarat, Anal. Lett. 2006, 39, 1171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFamtb4%3D&md5=e7e682a92aca01072a107c27d34a6bb9CAS |

[5]  K. Huang, K. Xu, X. Hou, Y. Jia, C. Zheng, L. Yang, J. Anal. At. Spectrom. 2013, 28, 510.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVaqur4%3D&md5=df6c9ccda3f79d563a39e233d1d085e3CAS |

[6]  D. Kong, N. Wang, X. Guo, H. Shen, Analyst 2010, 135, 545.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Gjsr8%3D&md5=2f9610018c8c03fb8c19bb7fe548eba9CAS |

[7]  C. X. Tang, Y. Zhao, X. W. He, X. B. Yin, Chem. Commun. 2010, 46, 9022.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGrt77E&md5=aadbd3a291d25503b7bc29b634430361CAS |

[8]  X. Zhu, L. Chen, Z. Lin, B. Qiu, G. Chen, Chem. Commun. 2010, 46, 3149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Crsr8%3D&md5=207b6f51e57d1824d6096c314eab95bbCAS |

[9]  A. Ghorai, J. Mondal, S. Chowdhury, G. K. Patra, Dalton Trans. 2016, 45, 11540.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVGnsLrF&md5=6563a0d75f128cfa1f82b97bfda8a85fCAS |

[10]  E. S. Childress, C. A. Roberts, D. Y. Sherwood, C. L. Leguyader, E. J. Harbron, Anal. Chem. 2012, 84, 1235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Oitbo%3D&md5=252670466d02e228926c2452dc8a32d1CAS |

[11]  L. J. Ma, Y. Li, L. Li, J. Sun, C. Tian, Y. Wu, Chem. Commun. 2008, 47, 6345.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  F. Y. Yan, Y. Zou, M. Wang, X. L. Mu, N. Yang, L. Chen, Sens. Actuators B 2014, 192, 488.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptVCj&md5=f3d9884d833d34ae7c964ca3f9b1d6b7CAS |

[13]  X. H. Zhou, L. Li, H. H. Li, A. Li, T. Yang, W. Huang, Dalton Trans. 2013, 42, 12403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WltLrP&md5=971ffc31a075d858fedf5e0223c6a4f2CAS |

[14]  M. M. Liu, G. Li, Z. H. Cheng, New J. Chem. 2015, 39, 8484.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlKks77J&md5=b20c5a2675ae0483cbe053d383fd3b21CAS |

[15]  Z. Xu, G. Q. Li, Y. Y. Ren, H. Huang, X. P. Wen, Q. Xu, X. T. Fan, Z. Huang, J. H. Huang, L. Xu, Dalton Trans. 2016, 45, 12087.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVyhsLjI&md5=bef5cca77a13e9aaf11ebbb9ecda6732CAS |

[16]  C. Kar, S. Goswami, A. Ramesh, G. Das, Dalton Trans. 2015, 44, 4123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsFOrug%3D%3D&md5=fd519b263b85e1d32d35121580ef9158CAS |

[17]  A. Mishra, J. H. Jo, H. Kim, S. Woo, K. W. Chi, ChemPlusChem 2014, 79, 925.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyru7jP&md5=3ebbb4736357d921b6c2d886a71f9c2fCAS |

[18]  S. N. Zhao, L. L. Wu, J. Feng, S. Y. Song, H. J. Zhang, Inorg. Chem. Front. 2016, 3, 376.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVynurvK&md5=c2f68a31ec0fdfb50be4386f360b15b7CAS |

[19]  P. Wu, Y. Liu, Y. Liu, J. Wang, Y. Li, W. Liu, J. Wang, Inorg. Chem. 2015, 54, 11046.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFGjtbnO&md5=e8c9408e3e19deca112f174dcb8bfc07CAS |

[20]  H. L. Jiang, D. Feng, T. F. Liu, J. R. Li, H. C. Zhou, J. Am. Chem. Soc. 2012, 134, 14690.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wqu7nN&md5=d624fe8758bc87090367d03261aee449CAS |

[21]  G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, A64, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  R. J. Gildea, L. J. Bourhis, O. V. Dolomanov, R. W. Grosse-Kunstleve, H. Puschmann, P. D. Adams, J. A. K. Howard, J. Appl. Cryst. 2011, 44, 1259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSisrvL&md5=4f8385f7650aa16455943815e5bb8758CAS |

[23]  L. Zhang, Y. Y. Qin, Z. J. Li, Q. P. Lin, J. K. Cheng, J. Zhang, Y. G. Yao, Inorg. Chem. 2008, 47, 8286.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFSmsbY%3D&md5=64575d4c447daf0d25497ffa26b8ab63CAS |

[24]  J. Sahu, M. Ahmad, P. K. Bharadwaj, Cryst. Growth Des. 2013, 13, 2618.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVyrsbo%3D&md5=fd102d813e7ee3d6f8d171a7973e9114CAS |

[25]  B. Q. Ma, H. L. Sun, G. Song, Angew. Chem. Int. Ed. 2004, 43, 1374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFahtr0%3D&md5=18fecc1563f95c7c0d9ed5c49eadb2a8CAS |

[26]  H. Y. Liu, J. F. Ma, Y. Y. Liu, J. Yang, CrystEngComm 2013, 15, 2699.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslKgsb8%3D&md5=00fee07ca2f07a02ccf8ac142960d322CAS |

[27]  Z. W. Wang, M. Yu, T. Li, X. R. Meng, J. Coord. Chem. 2013, 66, 4163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCqsrjE&md5=b8626563e06d3ab3c75a2f57392cd332CAS |

[28]  J. M. Zhou, W. Shi, H. M. Li, H. Li, P. Cheng, J. Phys. Chem. C 2014, 118, 416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSqs77E&md5=8d9b4652552605203a3ecf0972d6334bCAS |

[29]  S. S. Zhao, J. Yang, Y. Y. Liu, J. F. Ma, Inorg. Chem. 2016, 55, 2261.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XislCns74%3D&md5=551023aebe3319278b795fc6767b445eCAS |

[30]  Y. Wang, J. Yang, Y. Y. Liu, J. F. Ma, Chem. – Eur. J. 2013, 19, 14591.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCntLfI&md5=37a7576e2386386ea9878354a2fd44b1CAS |

[31]  Z. Hu, S. Pramanik, K. Tan, C. Zheng, W. Liu, X. Zhang, Y. J. Chabal, J. Li, Cryst. Growth Des. 2013, 13, 4204.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht12htLnO&md5=8f0669ba1e0dce1ef97dd1547457deaaCAS |

[32]  Z. Hu, B. J. Deibert, J. Li, Chem. Soc. Rev. 2014, 43, 5815.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Slu7nL&md5=3b5539c74cb32989cd3eac126b6a469dCAS |

[33]  H. Xu, M. Fang, C. S. Cao, W. Z. Qiao, B. Zhao, Inorg. Chem. 2016, 55, 4790.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XntVShsLg%3D&md5=350069d7e8003b93643d062a46466533CAS |

[34]  C. Q. Jiang, T. Wang, Bioorg. Med. Chem. 2004, 12, 2043.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtVKqtbg%3D&md5=51509f714a2bf2487a0594cacaa44ed1CAS |

[35]  Y. Zhou, C. Zhong, Y. He, L. Xiao, Y. Liu, H. Zhang, J. Inorg. Organomet. Polym. Mater. 2009, 19, 328.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFWks7g%3D&md5=bc316ba4c8c46909f1ac6115e17a2622CAS |

[36]  D. X. Zeng, Y. Chen, J. Photochem. Photobiol. Chem. 2007, 186, 121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Gisbs%3D&md5=bea2b3a6c45a65b9ee0ad131a8290ceaCAS |

[37]  Z. K. Wu, Y. F. Zhang, J. S. Ma, G. Q. Yang, Inorg. Chem. 2006, 45, 3140.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1OkurY%3D&md5=ea659618ef1b3fdb96aa930b824bf6a8CAS |