Brønsted Base-Mediated Aziridination of 2-Alkyl-Substituted-1,3-Dicarbonyl Compounds and 2-Acyl-Substituted-1,4-Dicarbonyl Compounds by Iminoiodanes
Ciputra Tejo A , Davin Tirtorahardjo A , David Philip Day B , Dik-Lung Ma C , Chung-Hang Leung D and Philip Wai Hong Chan B E FA Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
B Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
C Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
D State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
E School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.
F Corresponding author. Email: phil.chan@monash.edu; p.w.h.chan@warwick.ac.uk
Australian Journal of Chemistry 70(4) 430-435 https://doi.org/10.1071/CH16580
Submitted: 11 October 2016 Accepted: 23 November 2016 Published: 3 January 2017
Abstract
The synthesis of α,α-diacylaziridines and α,α,β-triacylaziridines from reaction of 2-alkyl-substituted-1,3-dicarbonyl compounds and 2-acyl-substituted-1,4-dicarbonyl compounds with arylsulfonyliminoiodinanes (ArSO2N=IPh) under Brønsted base-mediated atmospheric conditions is described. The reaction mechanism is thought to involve the formal oxidation of the substrate followed by aziridination of the ensuing α,β-unsaturated intermediate by the hypervalent iodine(iii) reagent.
References
[1] Recent reviews on the synthetic utility of aziridines, see refs [2–6].[2] Z. He, A. Zajdlik, A. K. Yudin, Acc. Chem. Res. 2014, 47, 1029.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslSisLs%3D&md5=20fed40d81e2fb0f5f512f0b2a27ffaaCAS |
[3] E. A. Ilardi, J. T. Njardarson, J. Org. Chem. 2013, 78, 9533.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVaru7jI&md5=32b6435ffc3d6655f47131716c457852CAS |
[4] R. Chawla, A. K. Singh, L. D. S. Yadav, RSC Adv. 2013, 3, 11385.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVarurbL&md5=17abd497a5df30b0dec6fa7b174dfed1CAS |
[5] S. Stanković, M. D’Hooghe, S. Catak, H. Eum, M. Waroquier, V. Van Speybroeck, N. De Kimpe, H.-J. Ha, Chem. Soc. Rev. 2012, 41, 643.
| Crossref | GoogleScholarGoogle Scholar |
[6] D. M. Hodgson, P. G. Humphreys, S. P. Hughes, Pure Appl. Chem. 2007, 79, 269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVKqt70%3D&md5=f128a8ca8a24458cd36d8a60824df0a9CAS |
[7] Recent examples on the synthetic utility of aziridines, see refs [8–14].
[8] S. P. Chavan, L. B. Khairnar, K. P. Pawar, P. N. Chavan, S. A. Kawale, RSC Adv. 2015, 5, 50580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXptFCkur8%3D&md5=67062946129bd99296cb6fa4d44c4e21CAS |
[9] C.-Y. Huang, A. G. Doyle, J. Am. Chem. Soc. 2015, 137, 5638.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmslSqt7g%3D&md5=14d90514e7136a019817e0780d69823eCAS |
[10] A. P. Treder, J. L. Hickey, M.-C. J. Tremblay, S. Zaretsky, C. C. G. Scully, J. Mancuso, A. Doucet, A. K. Yudin, E. Marsault, Chem. – Eur. J. 2015, 21, 9249.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXptFeqsLc%3D&md5=ef61c80bf002918f261b8605d8536896CAS |
[11] G. Wang, J. Franke, C. Q. Ngo, M. J. Krische, J. Am. Chem. Soc. 2015, 137, 7915.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVagu77E&md5=b4d860a3c34935f99fb2bd1592b3ffc5CAS |
[12] S. Nakamura, M. Ohara, M. Koyari, M. Hayashi, K. Hyodo, N. R. Nabisaheb, Y. Funahashi, Org. Lett. 2014, 16, 4452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlaisrbK&md5=b6e0263e628d342a0d481460498eedb9CAS |
[13] Y. Xu, K. Kaneko, M. Kanai, M. Shibasaki, S. Matsunaga, J. Am. Chem. Soc. 2014, 136, 9190.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsVGhurY%3D&md5=39a0a93f032514a23de38804e18f16fbCAS |
[14] G. Arena, C. C. Chen, D. Leonori, V. K. Aggarwal, Org. Lett. 2013, 15, 4250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1SlsLfE&md5=278663b2759143e27627ca8c8ff6cfaaCAS |
[15] Recent reviews on the biological activity and natural product constructed from aziridines, see refs [16–18].
[16] H.-Y. Lee, S.-B. Song, T. Kang, Y. J. Kim, S. J. Geum, Pure Appl. Chem. 2013, 85, 741.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVOjtbw%3D&md5=4648a884f73bcd8cce6b7a6f61e0b422CAS |
[17] F. M. D. Ismail, D. O. Levitsky, V. M. Dembitsky, Eur. J. Med. Chem. 2009, 44, 3373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslGitbo%3D&md5=a5c3c9de44c735b4e5ffffcb753c41a8CAS |
[18] P. A. S. Lowden, in Aziridines and Epoxides in Organic Synthesis (Ed. A. K. Yudin) 2006, pp. 399–442 (Wiley-VCH Verlag GmbH & Co. KGaA: Wienheim).
[19] Recent examples on the biological activity and natural product constructed from aziridines, see refs [20–23].
[20] B. T. Adams, S. Niccoli, M. A. Chowdhury, A. N. K. Esarik, S. J. Lees, B. P. Rempel, C. P. Phenix, Chem. Commun. 2015, 51, 11390.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVCmu7nI&md5=f95b296ba9bc291e33b1d7c2afefb7aeCAS |
[21] X. Pan, X. Li, Q. Lu, W. Yu, W. Li, Q. Zhang, F. Deng, F. Liu, Tetrahedron Lett. 2013, 54, 6807.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1yqsbjP&md5=ca95266e7c14eeb00b7e123f1455624eCAS |
[22] J. M. Vega-Pérez, C. Palo-Nieto, M. Vega-Holm, P. Góngora-Vargas, J. M. Calderón-Montaño, E. Burgos-Morón, M. López-Lázaro, F. Iglesias-Guerra, Eur. J. Med. Chem. 2013, 70, 380.
| Crossref | GoogleScholarGoogle Scholar |
[23] I. Kreituss, E. Rozenberga, J. Zemītis, P. Trapencieris, N. Romanchikova, M. Turks, Chem. Heterocycl. Compd. 2013, 49, 1108.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1OltbnF&md5=5aab01cae912013e3692181f8fa98a72CAS |
[24] Recent reviews on the synthesis of aziridines, see refs [23–27].
[25] A. Fingerhut, O. V. Serdyuk, S. B. Tsogoeva, Green Chem. 2015, 17, 2042.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvVWht7g%3D&md5=fe189c66fd53dbca8dccd5f4ae5c8605CAS |
[26] L. Degennaro, P. Trinchera, R. Luisi, Chem. Rev. 2014, 114, 7881.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotVahtLc%3D&md5=e2b4f22413f7c88e32812fb38de83525CAS |
[27] H. Pellissier, Adv. Synth. Catal. 2014, 356, 1899.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptl2ksr8%3D&md5=c987245679023943d949620bc6cbc3d0CAS |
[28] Recent examples of aziridine synthesis, see refs [29–38].
[29] J.-H. Jung, D.-H. Yoon, K. Lee, H. Shin, W. K. Lee, C.-M. Yook, H.-J. Ha, Org. Biomol. Chem. 2015, 13, 8187.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXoslOht78%3D&md5=4629250f755c070ac1d59e0e05bfb5edCAS |
[30] T. Moragas, I. Churcher, W. Lewis, R. A. Stockman, Org. Lett. 2014, 16, 6290.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVCjsL%2FJ&md5=304f56e28228ddb0f427a67c8ebc8fcbCAS |
[31] Y. Zhao, G. Wang, S. Zhou, Z. Li, X. Meng, Org. Biomol. Chem. 2014, 12, 3362.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslegsrs%3D&md5=05193299703dbb85bb700c58bb048740CAS |
[32] G.-H. Huang, J.-M. Li, J.-J. Huang, J.-D. Lin, G. J. Chuang, Chem. – Eur. J. 2014, 20, 5240.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkslGhtbs%3D&md5=3c0bd1c4e135e63d22e4408cbab68941CAS |
[33] Y. Li, H. Huang, Z. Wang, F. Yang, D. Li, B. Qin, X. Ren, RSC Adv. 2014, 4, 969.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGmsrfI&md5=b942d72c30d804f5c4b14b681ebc2312CAS |
[34] X. Meng, W. Chen, Y. Zhang, Y. Chen, B. Chen, J. Heterocycl. Chem. 2014, 51, 937.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Wms7%2FE&md5=b4f3edc8ac5503bdf3362122470ac814CAS |
[35] Y. Guan, M. P. López-Alberca, Z. Lu, Y. Zhang, A. A. Desai, A. P. Patwardhan, Y. Dai, M. J. Vetticatt, W. D. Wulff, Chem. – Eur. J. 2014, 20, 13894.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFWju7nK&md5=b4bfa1cb45bed1e1a2ba4d93009f7dd8CAS |
[36] J. Egloff, M. Ranocchiari, A. Schira, C. Schotes, A. Mezzetti, Organometallics 2013, 32, 4690.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1KhtrjO&md5=6b29189c7fe31d2482d0cfbc0de881efCAS |
[37] W.-J. Liu, Y.-H. Zhao, X.-W. Sun, Tetrahedron Lett. 2013, 54, 3586.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1Cks70%3D&md5=e2176c4a96635329c1825e85f6f11faeCAS |
[38] T. M. U. Ton, C. Tejo, D. L. Y. Tiong, P. W. H. Chan, J. Am. Chem. Soc. 2012, 134, 7344.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFOntLs%3D&md5=d824bb6c9cac4d36fa61e31532bde399CAS |
[39] Selected reviews on transition metal-mediated nitrene transfer reactions, see refs [40–48].
[40] G. Dequirez, V. Pons, P. Dauban, Angew. Chem., Int. Ed. 2012, 51, 7384.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFejs7s%3D&md5=3ad5f649d329af28435d9876e1340145CAS |
[41] J. L. Roizen, M. E. Harvey, J. Du Bois, Acc. Chem. Res. 2012, 45, 911.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1eqsr4%3D&md5=44c3b036c7f7674920c4a4ae707c199bCAS |
[42] F. Collet, C. Lescot, P. Dauban, Chem. Soc. Rev. 2011, 40, 1926.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFegsLk%3D&md5=3e57f7b381aefc28e64e3c4c1888ced3CAS |
[43] J. W. W. Chang, T. M. U. Ton, P. W. H. Chan, Chem. Rec. 2011, 11, 331.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFeqtLbI&md5=f661f81f0d1e06e298dfb0305a4a67eaCAS |
[44] F. Collet, R. H. Dodd, P. Dauban, Chem. Commun. 2009, 5061.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSlsb3E&md5=676753d82fb691e7552b245d63ad8534CAS |
[45] M. M. Díaz-Requejo, P. J. Pérez, Chem. Rev. 2008, 108, 3379.
| Crossref | GoogleScholarGoogle Scholar |
[46] H. M. L. Davies, J. R. Manning, Nature 2008, 451, 417.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGgu7w%3D&md5=340214333a1c104ee064b39c6895b566CAS |
[47] H. M. L. Davies, Angew. Chem., Int. Ed. 2006, 45, 6422.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFWhur3L&md5=030ce2214cb71a3dff514601e0c96e48CAS |
[48] P. Müller, C. Fruit, Chem. Rev. 2003, 103, 2905.
| Crossref | GoogleScholarGoogle Scholar |
[49] Selected examples on transition metal-mediated nitrene transfer reactions, see refs [50–62].
[50] J. Buendia, B. Darses, P. Dauban, Angew. Chem., Int. Ed. 2015, 54, 5697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvVeksrw%3D&md5=3c9d1ecbf2e1d401d0d369891969a35eCAS |
[51] J. Wang, M. Frings, C. Bolm, Angew. Chem., Int. Ed. 2013, 52, 8661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVGrt7zE&md5=1512575b97aa27143db4a0e4d7679ba4CAS |
[52] R. Gava, A. Biffis, C. Tubaro, F. Zaccheria, N. Ravasio, Catal. Commun. 2013, 40, 63.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCht73P&md5=89862560edb4b401d10dce4bdf1457cdCAS |
[53] L.-M. Jin, X. Xu, H. Lu, X. Cui, L. Wojtas, X. P. Zhang, Angew. Chem., Int. Ed. 2013, 52, 5309.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvFWqsbk%3D&md5=42449ee696d636fcb84c6e8cef081120CAS |
[54] Á. Beltrán, C. Lescot, M. M. Díaz-Requejo, P. J. Pérez, P. Dauban, Tetrahedron 2013, 69, 4488.
| Crossref | GoogleScholarGoogle Scholar |
[55] L. Maestre, W. M. C. Sameera, M. M. Díaz-Requejo, F. Maseras, P. J. Pérez, J. Am. Chem. Soc. 2013, 135, 1338.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitFSl&md5=f557d2a885e91b81dbff589fc1c861bcCAS |
[56] A. Yoshimura, V. N. Nemykin, V. V. Zhdankin, Chem. – Eur. J. 2011, 17, 10538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVenurzE&md5=20b304fbf1e6e377bf5745fac974676fCAS |
[57] Y. Liu, C.-M. Che, Chem. – Eur. J. 2010, 16, 10494.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGnsb3E&md5=05da60b558538a0adffe2ee9ee469085CAS |
[58] M. Nakanishi, A.-F. Salit, C. Bolm, Adv. Synth. Catal. 2008, 350, 1835.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVehur%2FI&md5=bf35a92ff877f76cec2ce55bbaa456e4CAS |
[59] L. He, J. Yu, J. Zhang, X.-Q. Yu, Org. Lett. 2007, 9, 2277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltV2itLg%3D&md5=62459460b3469d559a3b5c9ace5f6ec0CAS |
[60] M. Anada, M. Tanaka, T. Washio, M. Yamawaki, T. Abe, S. Hashimoto, Org. Lett. 2007, 9, 4559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOltbfM&md5=92f4a9ba93f4229c92e22857512e364aCAS |
[61] M. R. Fructos, S. Trofimenko, M. M. Díaz-Requejo, P. J. Pérez, J. Am. Chem. Soc. 2006, 128, 11784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVCitrY%3D&md5=c4f53336df2e347a2fa9ebf5ca3a562cCAS |
[62] L. He, P. W. H. Chan, W.-M. Tsui, W.-Y. Yu, C.-M. Che, Org. Lett. 2004, 6, 2405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1aqsrw%3D&md5=e29ac32e5ab25309ac25551382863d6cCAS |
[63] Recent works by us, see refs [38] and [64–70].
[64] C. Tejo, Y. F. A. See, M. Mathiew, P. W. H. Chan, Org. Biomol. Chem. 2016, 14, 844.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFWqsr3O&md5=f879143bd845cd6f25bb4e4929be39e1CAS |
[65] C. Tejo, X. R. Sim, B. R. Lee, B. J. Ayers, C.-H. Leung, D.-L. Ma, P. W. H. Chan, Molecules 2015, 20, 13336.
| Crossref | GoogleScholarGoogle Scholar |
[66] C. Tejo, H. Q. Yeo, P. W. H. Chan, Synlett 2014, 25, 201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslSrtLvN&md5=39b052ae255e045230415561bd63e5b0CAS |
[67] T. M. U. Ton, F. Himawan, J. W. W. Chang, P. W. H. Chan, Chem. – Eur. J. 2012, 18, 12020.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOmtbzI&md5=eaad5025d988301c810e9a5004f6448fCAS |
[68] T. M. U. Ton, C. Tejo, S. Tania, J. W. W. Chang, P. W. H. Chan, J. Org. Chem. 2011, 76, 4894.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslGmu70%3D&md5=1e6d75725050073b6ef916b12f8adfa5CAS |
[69] J. W. W. Chang, T. M. U. Ton, S. Tania, P. C. Taylor, P. W. H. Chan, Chem. Commun. 2010, 46, 922.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOis74%3D&md5=9f7d22e45681f437a20b5240e0071df4CAS |
[70] J. W. W. Chang, P. W. H. Chan, Angew. Chem., Int. Ed. 2008, 47, 1138.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFSmt74%3D&md5=b2a3ab6a828787d4404cc63cea6f5480CAS |
[71] Recent examples on transition metal-free-mediated aminations, see refs [64–66] and [72–81].
[72] K. Kiyokawa, T. Kosaka, S. Minakata, Org. Lett. 2013, 15, 4858.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVSisbzF&md5=bc740ec74737c7171019222b84706cbaCAS |
[73] M. Ochiai, S. Yamane, M. M. Hoque, M. Saito, K. Miyamoto, Chem. Commun. 2012, 48, 5280.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlOqsL8%3D&md5=2767a675c53871e460eb40bc3ef215d8CAS |
[74] D.-H. Zhang, Y. Wei, M. Shi, Eur. J. Org. Chem. 2011, 2011, 4940.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVeisb8%3D&md5=0cde8cdb408300f67c009c21c5270ea5CAS |
[75] R. Kowalczyk, A. J. F. Edmunds, R. G. Hall, C. Bolm, Org. Lett. 2011, 13, 768.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVegtQ%3D%3D&md5=73eae2d89880c5b205a6f9e8e64a3530CAS |
[76] M. Ochiai, K. Miyamoto, T. Kaneaki, S. Hayashi, W. Nakanishi, Science 2011, 332, 448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVamu7c%3D&md5=2be1ac724f6f4efbf7397a8ecfdeba39CAS |
[77] M. Ochiai, K. Miyamoto, S. Hayashi, W. Nakanishi, Chem. Commun. 2010, 46, 511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFaisQ%3D%3D&md5=d2dbd8d0a717c715540052559a075708CAS |
[78] C. Fang, W. Qian, W. Bao, Synlett 2008, 2529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ojs73E&md5=a09780b8e72280f84e1fcfd0f993b41dCAS |
[79] M. Ochiai, T. Kaneaki, N. Tada, K. Miyamoto, H. Chuman, M. Shiro, S. Hayashi, W. Nakanishi, J. Am. Chem. Soc. 2007, 129, 12938.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWgu7%2FK&md5=ba4752de126725d2e85ac2db074e5445CAS |
[80] J. Li, P. W. H. Chan, C.-M. Che, Org. Lett. 2005, 7, 5801.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ehur3P&md5=450adc0d0e1b8a828a04923396d28a21CAS |
[81] B.-W. Lim, K.-H. Ahn, Synth. Commun. 1996, 26, 3407.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xlt1GlsL4%3D&md5=da561311559b1d64db4c25af08f162d8CAS |
[82] CCDC 1508950 (2i) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[83] Recent examples of MIRC reactions in aziridines synthesis, see refs [84–88].
[84] C. De Fusco, T. Fuoco, G. Croce, A. Lattanzi, Org. Lett. 2012, 14, 4078.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFalurrE&md5=a9d6e14f13fd3419d3cb39f094cb1b27CAS |
[85] S. Sternativo, F. Marini, F. D. Verme, A. Calandriello, L. Testaferri, M. Tiecco, Tetrahedron 2010, 66, 6851.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1CmsLc%3D&md5=0f02f3ba29e7954f707da77a1864a7eeCAS |
[86] A. Ciogli, S. Fioravanti, F. Gasparrini, L. Pellacani, E. Rizzato, D. Spinelli, P. A. Tardella, J. Org. Chem. 2009, 74, 9314.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtl2qu7vJ&md5=c93b5783ce886bbc4fb18296b56fa3b6CAS |
[87] S. Fioravanti, S. Morea, A. Morreale, L. Pellacani, P. A. Tardella, Tetrahedron 2009, 65, 484.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOntLbN&md5=0210e8e5b7dbc7c8ee8bbe53ca4a6879CAS |
[88] S. Fioravanti, D. Colantoni, L. Pellacani, P. A. Tardella, J. Org. Chem. 2005, 70, 3296.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVWlsb0%3D&md5=ee149a26f587d1027cd34ee51b7bb36bCAS |
[89] Recent reviews on hypervalent iodine(iii) reagents, see refs [90–94].
[90] A. Yoshimura, V. V. Zhdankin, Chem. Rev. 2016, 116, 3328.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xit1aksrg%3D&md5=4eae2f4431ae4478d804edda36ee2415CAS |
[91] F. V. Singh, T. Wirth, Chem. – Asian J. 2014, 9, 950.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFWgu7s%3D&md5=700ad25bfda2e340679e55443bada521CAS |
[92] L. F. Silva, B. Olofsson, Nat. Prod. Rep. 2011, 28, 1722.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyqurfF&md5=9eac8f50ea656d1b9a56412f7587003eCAS |
[93] V. V. Zhdankin, P. J. Stang, Chem. Rev. 2008, 108, 5299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCgurzF&md5=b7820e00b66b3112cad274eb5a318855CAS |
[94] R. M. Moriarty, J. Org. Chem. 2005, 70, 2893.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtV2lsb8%3D&md5=f0982b2a088393cc0416527f0691979eCAS |
[95] Mechanistic studies with hypervalent iodine(iii) reagents, see refs [76] and [96–100].
[96] A. Ozanne-Beaudenon, S. Quideau, Angew. Chem., Int. Ed. 2005, 44, 7065.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1KrsrnJ&md5=b44f2ecba35e5e7ede9e02f1ce8658ecCAS |
[97] M. Ochiai, T. Suefuji, K. Miyamoto, M. Shiro, Org. Lett. 2005, 7, 2893.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVeisrg%3D&md5=03648a7d9209ac74beb0b4ef5f06093fCAS |
[98] M. Ochiai, J. Organomet. Chem. 2000, 611, 494.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVGkurs%3D&md5=1d7294bc06e79a49ce60bb52206ed5caCAS |
[99] D. H. R. Barton, J. Cs. Jaszberenyi, K. Leßmann, T. Timár, Tetrahedron 1992, 48, 8881.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitF2jtQ%3D%3D&md5=8d2af2c3ffc1c2b968ccf970e056fcd2CAS |
[100] S. Oae, Y. Uchida, Acc. Chem. Res. 1991, 24, 202.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkslSrt7w%3D&md5=f663914636929b9562c81856da15f1caCAS |