Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

N-Heterocyclic Carbene-Catalysed Mukaiyama–Michael Reaction and Mukaiyama Aldol/Mukaiyama–Michael Three-Component Coupling Reaction*

Kim Nguyen A and David W. Lupton A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton 3800, Vic., Australia.

B Corresponding author. Email: david.lupton@monash.edu

Australian Journal of Chemistry 70(4) 436-441 https://doi.org/10.1071/CH16566
Submitted: 5 October 2016  Accepted: 30 November 2016   Published: 20 January 2017

Abstract

An N-heterocyclic carbene-catalysed Mukaiyama–Michael addition between several trimethylsilyl (TMS) enol ethers and chalcone derivatives has been discovered. In addition, a related reaction cascade involving dehydrative Mukaiyama aldol followed by a Mukaiyama–Michael addition process has been developed. The later reaction can also be achieved as a three-component coupling reaction. The enantioselective variant of these reactions has been examined with homochiral catalysts. Though these catalysts were active, they fail to achieve enantioinduction.


References

[1]  (a) For a selection of recent reviews on NHC catalysis see: D. M. Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev. 2015, 115, 9307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXovVShtLY%3D&md5=0cfafb18bfe7195ef7ebfa2be0901e1cCAS |
      (b) D. Enders, O. Niemeier, A. Henseler, Chem. Rev. 2007, 107, 5606.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. Nair, R. S. Menon, A. T. Biju, C. R. Sinu, R. R. Paul, A. Jose, V. Sreekumar, Chem. Soc. Rev. 2011, 40, 5336.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Douglas, G. Churchill, A. D. Smith, Synthesis 2012, 44, 2295.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) For cascade catalysis see: A. Grossmann, D. Enders, Angew. Chem., Int. Ed. 2012, 51, 314.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) X. Bugaut, F. Glorius, Chem. Soc. Rev. 2012, 41, 3511.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) J. Izquierdo, G. E. Hutson, D. T. Cohen, K. A. Scheidt, Angew. Chem., Int. Ed. 2012, 51, 11686.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) S. J. Ryan, L. Candish, D. W. Lupton, Chem. Soc. Rev. 2013, 42, 4906.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) S. De Sarkar, A. Biswap, R. C. Samanta, A. Studer, Chem. Eur. J. 2013, 19, 4664.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) J. Mahatthananchai, J. W. Bode, Acc. Chem. Res. 2014, 47, 696.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) P. Chauhan, D. Enders, Angew. Chem., Int. Ed. 2014, 53, 1485.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  B. Maji, M. Breugst, H. Mayr, Angew. Chem., Int. Ed. 2011, 50, 6915.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotV2itro%3D&md5=5f0e405762559476e12a5a3049e7bef3CAS |

[3]  For trifluoromethylation with TMSCF3 see: J. J. Song, Z. Tan, J. T. Reeves, F. Gallou, N. K. Yee, C. H. Senanayake, Org. Lett. 2005, 7, 2193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVehsbg%3D&md5=4dc0e55b04e8b19a5b95aaa5207e9d31CAS |

[4]  For cyanation with TMSCN see: J. J. Song, F. Gallou, J. T. Reeves, Z. Tan, N. K. Yee, C. H. Senanayake, J. Org. Chem. 2006, 71, 1273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVymtQ%3D%3D&md5=f97398b09a53e0fa73d7ce1bb6aaad6fCAS |

[5]  J. J. Song, Z. Tan, J. T. Reeves, N. K. Yee, C. H. Senanayake, Org. Lett. 2007, 9, 1013.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1SgsLk%3D&md5=eca2408e19fda9d9486afca2a080ff41CAS |

[6]  J. J. Song, Z. Tan, J. T. Reeves, D. R. Fandrick, N. K. Yee, C. H. Senanayake, Org. Lett. 2008, 10, 877.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFymsbw%3D&md5=0a9425fb48a5c428bb76c0ad77198a86CAS |

[7]  (a) For reviews focused on NHC catalysis with silicon-containing compounds see: M. J. Fuchter, Chem. Eur. J. 2010, 16, 12286.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlehtb%2FK&md5=35c501cdae39bb64ad46b7506a55d4ccCAS |
      (b) L. He, H. Gao, Y. Wang, G.-F. Du, B. Dai, Tetrahedron Lett. 2015, 56, 972.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) For adamantly NHC-based catalysis see: K. A. Agnew-Francis, C. M. Williams, Adv. Synth. Catal. 2016, 358, 675.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) For recent examples of NHC catalysis with silicon compounds, see for vinylogous aldol G.-F. Du, L. He, C.-Z. Gu, B. Dai, Synlett 2010, 16, 2513.
      (b) For vinylogous Mukaiyama–Michael see: Y. Wang, G.-F. Du, F. Xing, K.-W. Huang, B. Dai, L. He, Asian J. Org. Chem. 2015, 4, 1362.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) For the Petersen olefination see: Y. Wang, G.-F. Du, C.-Z. Gu, F. Xing, B. Dai, L. He, Tetrahedron 2016, 72, 472.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) For related base-mediated vinylogous Michael additions see: H. Guo, F. Xing, G.-F. Du, K.-W. Huang, B. Dai, L. He, J. Org. Chem. 2015, 80, 12606.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) For acyl azolium studies with silyl enol ethers see: S. J. Ryan, L. Candish, D. W. Lupton, J. Am. Chem. Soc. 2009, 131, 14176.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCjtrvE&md5=36d89c220e6ea13ab2a7af0a79660ec7CAS |
      (b) S. J. Ryan, L. Candish, D. W. Lupton, J. Am. Chem. Soc. 2011, 133, 4694.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. J. Ryan, A. Stasch, M. N. Paddon-Row, D. W. Lupton, J. Org. Chem. 2012, 77, 1113.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Pandiancherri, S. J. Ryan, D. W. Lupton, Org. Biomol. Chem. 2012, 10, 7903.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) L. Candish, D. W. Lupton, J. Am. Chem. Soc. 2013, 135, 58.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) L. Candish, C. M. Forsyth, D. W. Lupton, Angew. Chem., Int. Ed. 2013, 52, 9149.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) For studies related to reference [9] involving enol ethers see: L. Candish, D. W. Lupton, Org. Lett. 2010, 12, 4836.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ajt7bP&md5=66956e38553e1cdbbd16404c372c9ebbCAS |
      (b) L. Candish, D. W. Lupton, Org. Biomol. Chem. 2011, 9, 8182.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Candish, D. W. Lupton, Chem. Sci. 2012, 3, 380.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Kowalczyk, D. W. Lupton, Angew. Chem., Int. Ed. 2014, 53, 5314.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) For a concise overview of the Mukaiyama aldol reaction and some discussion of the Mukaiyama–Michael reaction see: J.-I. Matsuo, M. Murakami, Angew. Chem., Int. Ed. 2013, 52, 9109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCktrjN&md5=41920141b52323a24c25ce29e32dfcbaCAS |
      (b) For an introduction to important asymmetric Mukaiyama–Michael reactions see: K. M. Byrd, Beilstein J. Org. Chem. 2015, 11, 530.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  For procedures on the preparation of the IAd·HBF4 see: H. Richter, P. Schweertfehger, R. Schreiner, R. Fröhlich, F. Glorius, Synlett 2009, 2, 193.

[13]  For an example of this type of chemistry see: X. Luo, Z. Shan, Tetrahedron Lett. 2006, 47, 5623.Relative stereochemistry assigned based on the literature.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFektbo%3D&md5=aebab9a56cfac5cebab7132c0d5c6170CAS |

[14]  For computational studies regarding the viability of silicate intermediates see: D. Pathak, S. Deuri, P. Phukan, J. Phys. Chem. A 2016, 120, 128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVSksrvE&md5=418e8275854f2f52d583217f4a8fdcc1CAS |

[15]  (a) For the impact of salt by-products on reaction outcome from our group see reference [10c]. For selected studies on cooperative catalysis with NHCs see: X. Zhao, D. A. DiRocco, T. Rovis, J. Am. Chem. Soc. 2011, 133, 12466.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlSltbs%3D&md5=6a14ca794738cc4e15845d0b0beaa81dCAS |
      (b) D. T. Cohen, K. A. Scheidt, Chem. Sci. 2012, 3, 53.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Dugal-Tessier, E. A. O’Bryan, T. B. H. Schroeder, D. T. Cohen, K. A. Sch`eidt, Angew. Chem., Int. Ed. 2012, 51, 4963.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Mo, X. Chen, Y. R. C`hi, J. Am. Chem. Soc. 2012, 134, 8810.
         | Crossref | GoogleScholarGoogle Scholar |