Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of Side-Chain Modified Peptides Using Iterative Solid Phase ‘Click’ Methodology

Xuejian Liu A , Robert B. P. Elmes A and Katrina A. Jolliffe A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.

B Corresponding author. Email: kate.jolliffe@sydney.edu.au

Australian Journal of Chemistry 70(2) 201-207 https://doi.org/10.1071/CH16567
Submitted: 5 October 2016  Accepted: 2 November 2016   Published: 30 November 2016

Abstract

A series of side-chain modified peptides have been prepared via an iterative sequence of peptide couplings and azide–alkyne cycloadditions (‘click’ reactions) using Fmoc-solid phase peptide synthesis. This efficient modular synthetic route allows the systematic and sequential incorporation of a variety of side-chain modifications onto short peptides. The versatility of this approach was demonstrated by the synthesis of a series of short peptides with appended anion recognition motifs and fluorescent indicators.


References

[1]  (a) For recent examples see: J. Rodríguez, J. Mosquera, M. E. Vázquez, J. Mascareñas, Chem. – Eur. J. 2016, 22, 13474.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) I. Drienovská, A. Rioz-Martínez, A. Draksharapu, G. Roelfes, Chem. Sci. 2015, 6, 770.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. Vairaprakash, H. Ueki, K. Tashiro, O. M. Yaghi, J. Am. Chem. Soc. 2011, 133, 759.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) G. Dirscherl, R. Knape, P. Hanson, B. König, Tetrahedron 2007, 63, 4918.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) For recent examples see: G. Loving, B. Imperiali, J. Am. Chem. Soc. 2008, 130, 13630.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCntL7E&md5=02056c356b15af6060739e6d3e213b2dCAS |
      (b) C. Li, E. Henry, N. K. Mani, J. Tang, J.-C. Brochon, E. Deprez, J. Xie, Eur. J. Org. Chem. 2010, 2395.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. C. Speight, A. K. Muthasamy, J. M. Goldberg, J. B. Warner, R. F. Wissner, T. S. Willi, B. F. Woodman, R. A. Mehl, E. J. Petersson, J. Am. Chem. Soc. 2013, 135, 18806.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. Koopmans, M. van Haren, L. Quarles van Ufford, J. M. Beekman, N. I. Martin, Bioorg. Med. Chem. 2013, 21, 553.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. T. Krueger, B. Imperiali, ChemBioChem 2013, 14, 788.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) E. Kuru, S. Tekkam, E. Hall, Y. V. Brun, M. S. Van Nieuwenhze, Nat. Protoc. 2015, 10, 33.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) D. Taleski, S. J. Butler, M. J. Stone, R. J. Payne, Chem. Asian J. 2011, 6, 1316.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVegsb4%3D&md5=4ddd9ee3ad0692a102d93d435b4070f2CAS |
      (b) M. Cudic, G. D. Burstein, Methods Mol. Biol. 2008, 494, 187.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. M. Marmelstein, L. M. Yates, J. H. Conway, D. Fiedler, J. Am. Chem. Soc. 2014, 136, 108.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) P. G. Young, K. A. Jolliffe, Org. Biomol. Chem. 2012, 10, 2664.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFKlsb4%3D&md5=9bd21f2f0403678a7502b3185f9de30fCAS |
      (b) P. G. Young, J. K. Clegg, M. Bhadbhade, K. A. Jolliffe, Chem. Commun. 2011, 47, 463.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. J. Dungan, H. T. Ngo, P. G. Young, K. A. Jolliffe, Chem. Commun. 2013, 49, 264.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) R. B. P. Elmes, K. K. Y. Yuen, K. A. Jolliffe, Chem. – Eur. J. 2014, 20, 7373.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R. B. P. Elmes, K. A. Jolliffe, Chem. Commun. 2015, 51, 4951.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) S. J. Butler, K. A. Jolliffe, Org. Biomol. Chem. 2011, 9, 3471.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks12isrs%3D&md5=4b78626bc09c995d13d84c55ce67365aCAS |
      (b) S. J. Butler, K. A. Jolliffe, Chem. Asian J. 2012, 7, 2621.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X. Liu, H. T. Ngo, Z. Ge, S. J. Butler, K. A. Jolliffe, Chem. Sci. 2013, 4, 1680.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) K. K. Y. Yuen, K. A. Jolliffe, Chem. Commun. 2013, 49, 4824.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) V. E. Zwicker, B. M. Long, K. A. Jolliffe, Org. Biomol. Chem. 2015, 13, 7822.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  X. Liu, D. G. Smith, K. A. Jolliffe, Chem. Commun. 2016, 52, 8463.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xps1Shtb8%3D&md5=751fdc380a38e22a50074f742eed1c16CAS |

[7]  V. E. Zwicker, X. Liu, K. K. Y. Yuen, K. A. Jolliffe, Supramol. Chem. 2016, 28, 192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFOktbc%3D&md5=8b3dab9bd1cc681a21d71d3086e9a677CAS |

[8]  C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  L. V. Lee, M. L. Mitchell, S.-J. Huang, V. V. Fokin, K. B. Sharpless, C.-H. Wong, J. Am. Chem. Soc. 2003, 125, 9588.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFOgsbc%3D&md5=13fbb824defab60787688a7e608c1069CAS |

[10]  A. E. Speers, G. C. Adam, B. F. Cravatt, J. Am. Chem. Soc. 2003, 125, 4686.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlylu7o%3D&md5=47b6d4763842ea5513f8955aab070d45CAS |

[11]  H.-J. Musiol, S. Dong, M. Kaiser, R. Bausinger, A. Zumbusch, U. Bertsch, L. Moroder, ChemBioChem 2005, 6, 625.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFenurk%3D&md5=7880eb070c524c8e28ffeebcae4dfe8cCAS |

[12]  P. G. Cornier, D. B. Boggián, E. G. Mata, C. M. L. Delpiccolo, Tetrahedron Lett. 2012, 53, 632.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVCgtQ%3D%3D&md5=1df7285db79fe95437b3b3880f88686eCAS |

[13]  Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless, M. G. Finn, J. Am. Chem. Soc. 2003, 125, 3192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlGktL0%3D&md5=9e76c4f1381da88dfc7217a06efcfba4CAS |

[14]  M. J. Joralemon, R. K. O’Reilly, J. B. Matson, A. K. Nugent, C. J. Hawker, K. L. Wooley, Macromolecules 2005, 38, 5436.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslSlt7k%3D&md5=ea912fad9182c728cf91c6e5d23d9ecfCAS |

[15]  P. Wu, M. Malkoch, J. N. Hunt, R. Vestberg, E. Kaltgrad, M. G. Finn, V. V. Fokin, K. B. Sharpless, C. J. Hawker, Chem. Commun. 2005, 5775.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Cmur7M&md5=e4d722665c2a83bff71c320d219c7beaCAS |

[16]  (a) S. Ingale, P. E. Dawson, Org. Lett. 2011, 13, 2822.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVSks74%3D&md5=45cd2f299729ba5bc0d65b3a089efcb2CAS |
      (b) C. J. Capicciotti, J. F. Trant, M. Leclère, R. N. Ben, Bioconjug. Chem. 2011, 22, 605.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Meldal, C. W. Tornøe, T. E. Nielsen, F. Diness, S. T. Le Quement, C. A. Christensen, J. Feldthusen Jensen, K. Worm-Leonhard, T. Groth, L. Bouakaz, B. Wu, G. Hagel, L. Keinicke, Biopolymers 2010, 94, 161.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  (a) J. Holub, H. Jang, K. Kirshenbaum, Org. Biomol. Chem. 2006, 4, 1497.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1Khtrk%3D&md5=e4961cb27582960d85e545c78b8b3624CAS |
      (b) D. S. Pedersen, A. Abell, Eur. J. Org. Chem. 2011, 2399.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  C. Bouillon, A. Meyer, S. Vidal, A. Jochum, Y. Chevolot, J.-P. Cloarec, J.-P. Praly, J.-J. Vasseur, F. Morvan, J. Org. Chem. 2006, 71, 4700.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFKktL8%3D&md5=41043caa2abb120192a75e2f75102156CAS |

[19]  L. A. Carpino, J. Am. Chem. Soc. 1993, 115, 4397.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkslejurc%3D&md5=1a9c672650e65f837f038d8686613788CAS |

[20]  A. Nadler, C. Hain, U. Diederichsen, Eur. J. Org. Chem. 2009, 4593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2kurvF&md5=6ae2c9b4b65476679839b6c3bfae44b6CAS |

[21]  R. Franke, C. Doll, J. Eichler, Tetrahedron Lett. 2005, 46, 4479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFWgsbY%3D&md5=9e7bea31aa8d56adc2526df32d7adfc9CAS |

[22]  We recently reported the synthesis of analogues of 2 and 3 using alternative ‘click’ conditions (CuI catalyst) on solid phase – see ref. [7].

[23]  Compound 14 was prepared from the corresponding bromo derivative upon treatment with sodium azide and tetrabutylammonium chloride, following the procedure described for synthesis of 1-(2-azapropyl)uracil in T. Sasaki, K. Minamoto, T. Suzuki, S. Yamashita, Tetrahedron 1980, 36, 865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmtVCmtbs%3D&md5=ed0203a4296ee8b2e427e64b34d92b8fCAS |

[24]  Binding data for compounds analogous to 2·Zn2 and 3·Zn2 were reported recently – see ref. [7].

[25]  P. Gans, A. Sabatini, A. Vacca, Talanta 1996, 43, 1739.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvVWrsb0%3D&md5=740389dff9b73216c516c5d311d9ab61CAS |