Total Solid-Phase Synthesis of Biologically Active Drosophila Insulin-Like Peptide 2 (DILP2)
Feng Lin A , Mohammed Akhter Hossain A B , Stephanie Post C , Galina Karashchuk C , Marc Tatar C , Pierre De Meyts D E F and John D. Wade A B FA Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic. 3010, Australia.
B School of Chemistry, University of Melbourne, Melbourne, Vic. 3010, Australia.
C Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
D Department of Cell Signalling, de Duve Institute, 1200 Brussels, Belgium.
E Global Research External Affairs, Novo Nordisk A/S. 2760 Maaloev, Denmark.
F Corresponding authors. Email: pierre.demeyts@gmail.com; john.wade@florey.edu.au
Australian Journal of Chemistry 70(2) 208-212 https://doi.org/10.1071/CH16626
Submitted: 4 November 2016 Accepted: 21 November 2016 Published: 12 December 2016
Abstract
In the fruit fly Drosophila melanogaster, there are eight insulin-like peptides (DILPs) with DILPs 1–7 interacting with a sole insulin-like receptor tyrosine kinase (DInR) while DILP8 interacts with a single G protein-coupled receptor (GPCR), Lgr3. Loss-of-function dilp mutation studies show that the neuropeptide DILP2 has a key role in carbohydrate and lipid metabolism as well as longevity and reproduction. A better understanding of the processes whereby DILP2 mediates its specific actions is required. Consequently we undertook to prepare DILP2 as part of a larger, detailed structure–function relationship study. Use of our well established insulin-like peptide synthesis protocol that entails separate solid-phase assembly of each of the A- and B-chains with selective cysteine S-protection followed by sequential S-deprotection and simultaneous disulfide bond formation produced DILP2 in good overall yield and high purity. The synthetic DILP2 was shown to induce significant DInR phosphorylation and downstream signalling, with it being more potent than human insulin. This peptide will be a valuable tool to provide further insights into its binding to the insulin receptor, the subsequent cell signalling, and role in insect metabolism.
References
[1] M. Tatar, A. Bartke, A. Antebi, Science 2003, 299, 1346.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFWrsL8%3D&md5=ade3d40e6bedf80728ddb85bd246ad57CAS |
[2] S. Blumenthal, Perspect. Biol. Med. 2010, 53, 491.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2ks77J&md5=873d4b34dfab15c690af1e9c452d498fCAS |
[3] F. Shabanpoor, F. Separovic, J. D. Wade, Vitam. Horm. 2009, 80, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlSit74%3D&md5=133c04ef4deffde9062ab9bf59d471f0CAS |
[4] J. Piñero-González, A. Gonzalez-Perez, OMICS 2011, 15, 439.
| Crossref | GoogleScholarGoogle Scholar |
[5] Q. Wu, M. R. Brown, Annu. Rev. Entomol. 2006, 51, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlCgtQ%3D%3D&md5=e9245e694fa535075eba62a4f47d04c9CAS |
[6] P. De Meyts, BioEssays 2004, 26, 1351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslWgsA%3D%3D&md5=9b0400196d7515b1dcaa87311dda9cafCAS |
[7] Z.-Y. Guo, Z.-S. Qiao, Y.-M. Feng, Antioxid. Redox Signal. 2008, 10, 127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlajs7rE&md5=ff752fb310278a3885db262b2425ee84CAS |
[8] L. Badisco, I. Claeys, M. Van Hiel, E. Clynen, J. Huybrechts, T. Vandersmissen, S. Van Soest, L. Vanden Bosch, G. Simonet, J. Vanden Broek, J. Mol. Endocrinol. 2008, 40, 137.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlertL8%3D&md5=4c79f01ad942dbfd039c6194f27d7d3eCAS |
[9] A. Mizoguchi, N. Okamoto, Front. Physiol. 2013, 4, 217.
| Crossref | GoogleScholarGoogle Scholar |
[10] K. Kannan, Y.-W. Fridell, Front. Physiol. 2013, 4, 1.
| Crossref | GoogleScholarGoogle Scholar |
[11] S. Grönke, D.-F. Clarke, S. Broughton, T. D. Andrews, L. Partridge, PLoS Genet. 2010, 6, e1000857.
| Crossref | GoogleScholarGoogle Scholar |
[12] D. R. Nassel, J. Vanden Broek, Cell. Mol. Life Sci. 2016, 73, 271.
| Crossref | GoogleScholarGoogle Scholar |
[13] D. R. Nassel, O. I. Kubrak, Y. Liu, J. Luo, O. V. Lushchak, Front. Physiol. 2013, 4, 252.
| Crossref | GoogleScholarGoogle Scholar |
[14] S. Post, M. Tatar, PLoS One 2016, 11, e0155628.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. Colombani, D. S. Andersen, P. Leopold, Science 2012, 336, 582.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1Gnsbs%3D&md5=293d7c39931bb85587c66938b5937f85CAS |
[16] J. Colombani, D. S. Andersen, L. Boulan, E. Boone, N. Romero, V. Virolle, M. Texada, P. Leopold, Curr. Biol. 2015, 25, 2723.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1SqsL%2FN&md5=9054f7cfe12a9d5f9f5d6b66023feeaaCAS |
[17] R. A. Bathgate, M. L. Halls, E. T. van der Westhuizen, G. E. Callander, M. Kocan, R. J. Summers, Physiol. Rev. 2013, 93, 405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKnsL8%3D&md5=f51b865d60928ab7b9c831051c8969a9CAS |
[18] W. Sajid, N. Kulahin, G. Schlukebier, U. Ribel, H. R. Henderson, M. Tatar, B. F. Hansen, A. M. Svendsen, V. V. Kiselyov, P. Nørgaard, J. Biol. Chem. 2011, 286, 661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVeq&md5=61d7861c860570c0a92d54032435ff92CAS |
[19] M. R. Brown, K. D. Clark, M. Gulia, Z. Zhao, S. F. Gonczynski, J. W. Crim, R. J. Suderman, M. R. Straud, Proc. Natl. Acad. Sci. USA 2008, 105, 5716.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFShsL4%3D&md5=d0db49a89340272742bc84c3463efb92CAS |
[20] F. Liu, A. N. Zaykov, J. J. Levy, R. D. DiMarchi, J. P. Mayer, J. Pept. Sci. 2016, 22, 260.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjtFOhsrw%3D&md5=d9d8b1fdf8df002e9b4a2d18878b6076CAS |
[21] M. A. Hossain, J. D. Wade, Curr. Opin. Chem. Biol. 2014, 22, 47.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1OrtrbF&md5=18bdb265207989de677e52673a95e9e1CAS |
[22] K. J. Rosengren, S. Zhang, F. Lin, N. L. Daly, D. J. Scott, R. A. Hughes, R. A. D. Bathgate, D. J. Craik, J. D. Wade, J. Biol. Chem. 2006, 281, 28287.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFOqsrY%3D&md5=e9a0229dd0bf7b64423b2c7fd232cee2CAS |
[23] M. A. Hossain, R. A. Bathgate, C. Kong, F. Shabanpoor, S. Zhang, L. M. Haugaard-Jönsson, K. J. Rosengren, G. W. Tregear, J. D. Wade, ChemBioChem 2008, 9, 1816.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVyns7Y%3D&md5=2b54caeb26f5a7c2ac92335cc19a8517CAS |
[24] M. A. Hossain, A. Belgi, F. Lin, S. Zhang, F. Shabanpoor, C. Belyea, H. T. Truong, A. R. Blair, S. Andrikopoulos, G. W. Tregear, J. D. Wade, Bioconjug. Chem. 2009, 20, 1390.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1eksbY%3D&md5=caddb18ae4788b95c9df58a079e6f51bCAS |
[25] L. J. Chan, C. J. Smith, R. A. D. Bathgate, F. Separovic, A. L. Gundlach, M. A. Hossain, J. D. Wade, Front. Chem. Biol. 2013, 1, 30.
[26] S. Guirao-Rico, M. Aguadé, Mol. Biol. Evol. 2011, 28, 1557.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1Gmsrk%3D&md5=ee8e01639f3bb629888650216dd668c9CAS |
[27] E. Canova-Davis, T. J. Kessler, P.-J. Lee, D. T. W. Fei, P. Griffin, J. T. Stults, J. D. Wade, E. Rinderknecht, Biochemistry 1991, 30, 6006.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVSqu70%3D&md5=b4e73d7a05870d9eef1fc43eee6b5394CAS |
[28] D. J. Powell, S. Turban, A. Gray, E. Hajduch, H. S. Hindal, Biochem. J. 2004, 382, 619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVOnt7k%3D&md5=acd8cd51a13157d108c57a3664032b40CAS |
[29] R. Sopko, M. Foos, A. Vinayagam, B. Zhai, R. Binari, Y. Hu, S. Randiklev, L. A. Perkins, S. P. Gygi, N. Perrimon, Dev. Cell 2014, 31, 114.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1OrsbfK&md5=13f82ef7724f5aead51485048e4dc6e4CAS |
[30] S. Schleich, K. Strassburger, P. C. Janiesch, T. Koledachkina, K. K. Miller, K. Haneke, Y. S. Cheng, K. Küchler, G. Stoecklin, K. E. Duncan, A. A. Teleman, Nature 2014, 512, 208.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGntLfO&md5=f7f2729fb04eeb98bc21ec8f53e6c7f6CAS |