Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Two New Oxovanadium(iv) Compounds Containing Amino Acid Schiff Base and 1,10-Bathophenanthroline Ligands: Syntheses, Crystal Structures, and In Vitro Evaluation of the Anticancer Activities

Yaping Cao A , Hongmei Liu A , Zeli Yuan A C and Gang Wei B C
+ Author Affiliations
- Author Affiliations

A School of Pharmacy, Zunyi Medical University, No. 201 Dalian Road, Huichuan District, Zunyi, Guizhou Province, 563003, China.

B CSIRO Manufacturing, PO Box 218, Lindfield, NSW 2070, Australia.

C Corresponding authors. Email: zlyuan@zmc.edu.cn; gang.wei@csiro.au

Australian Journal of Chemistry 70(5) 608-613 https://doi.org/10.1071/CH16538
Submitted: 25 September 2016  Accepted: 16 February 2017   Published: 16 March 2017

Abstract

Two new oxovanadium(iv) compounds containing 1,10-bathophenanthroline (Bphen) and amino Schiff base derivatives [VO(hnd-napha)(Bphen)] (1) and [VO(o-van-met)(Bphen)] (2) were synthesised (where hnd-napha and o-van-met are N-Schiff bases derived from the reaction of 2-hydroxy-1-naphthaldehyde with 3-(1-naphthyl)-l-alanine and o-vanillin with l-methionine, respectively). These compounds were characterised by elemental analysis, infrared spectroscopy, high-resolution mass spectrometry, and single-crystal X-ray diffraction (XRD). Both compounds showed low molar conductance values, indicating that they are non-electrolytes. The XRD results showed that the VIV atoms in both compounds existed in the VO3N3 coordination geometry with Schiff base and Bphen ligands. The in vitro anticancer activities of compounds 1 and 2 were evaluated against A549 human lung carcinoma and HepG2 human hepatoma cell lines using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the results revealed that both compounds were cytotoxic with half maximal inhibitory concentration (IC50) values in the range of 8.22 ± 1.0 to 94.89 ± 3.2 μmol L−1. Notably, compound 2 exhibited much better anticancer activity in vitro against A549 cells (8.22 ± 1 μmol L−1) than [VO(acac)2] (24 ± 6 μmol L−1) or any of our previously reported oxovanadium(iv) compounds, making it comparable in activity to cisplatin (3.1 ± 0.5 μmol L−1). These results therefore suggest that compound 2 could be used as a promising lead for the development of anticancer agents for the treatment of lung cancer.


References

[1]  Q. Wu, Z. P. Yang, Y. Z. Ni, Y. Q. Shi, D. M. Fan, Cancer Lett. 2014, 347, 159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkvV2ktL8%3D&md5=916df149c184a525c5f45040d0c784acCAS |

[2]  L. Sivak, V. Subr, J. Tomala, B. Rihova, J. Strohalm, T. Etrych, M. Kovar, Biomaterials 2017, 115, 65.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFegtLnK&md5=8a5a9e3f8e225c62e9cac151fc75ba06CAS |

[3]  P. E. Saw, J. Park, S. Jon, O. C. Farokhzad, Nanomedicine 2017, 13, 713.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslKksbnF&md5=56bc5a4aa2bd21bff33c3b084a86fe2dCAS |

[4]  K. Jeong, C. S. Kang, Y. Kim, Y. D. Lee, I. C. Kwon, S. Kim, Cancer Lett. 2016, 374, 31.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XisFGrsrs%3D&md5=e7118eefa7888557279748d488b1a669CAS |

[5]  C. M. Clavel, P. Nowak-Sliwinska, E. Păunescu, P. J. Dyson, MedChemComm 2015, 6, 2054.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1aksb3I&md5=a15509c6d1b76ffd8c1f024785950d2fCAS |

[6]  C. Liang, L. G. Xu, G. S. Song, Z. Liu, Chem. Soc. Rev. 2016, 45, 6250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVCjtbrM&md5=dcb0ef07cc5483418994b9a9e3929672CAS |

[7]  W. P. Fan, P. Huang, X. Y. Chen, Chem. Soc. Rev. 2016, 45, 6488.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFKjtrvE&md5=23db6308daa86551417f7c6e4799e472CAS |

[8]  B. I. Ferreira, M. K. Lie, A. S. T. Engelsen, S. Machado, W. Link, J. B. Lorens, MedChemComm 2017, 8, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslalsbjK&md5=92c0b51b549b17816b6167582d7458c4CAS |

[9]  S. K. Mal, T. Chattopadhyay, A. Fathima, C. S. Purohit, M. S. Kiran, B. U. Nair, R. Ghosh, Polyhedron 2017, 126, 23.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtlGhtrs%3D&md5=13520174d187a733a97388eb2050f663CAS |

[10]  W. Rui, X. Y. Tian, P. F. Zeng, W. M. Liu, P. Ying, H. C. Chen, J. Z. Lu, N. Yang, H. Y. Chen, Polyhedron 2016, 117, 803.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht12ksr7E&md5=b7e9add78298b592906d92326346961dCAS |

[11]  C. Acilan, B. Cevatemre, Z. Adiguzel, D. Karakas, E. Ulukaya, N. Ribeiro, I. Correia, J. C. Pessoa, Biochim. Biophys. Acta 2017, 1861, 218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhslamu7%2FL&md5=4376c1b2b3d704078671a0c7a89255fdCAS |

[12]  S. B. Chanu, S. Banerjee, M. Roy, Eur. J. Med. Chem. 2017, 125, 816.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslShsbvL&md5=2780895ad846e49c1900e1fa8531ea42CAS |

[13]  Y. P. Cao, C. L. Yi, H. M. Liu, H. X. Li, Q. p. Li, Z. L. Yuan, G. Wei, Trans. Met. Chem. 2016, 41, 531.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmtFens7w%3D&md5=5a9b78cf7578dd59b7e8be58d814ad9dCAS |

[14]  E. Bagdatli, E. Altuntas, U. Sayin, J. Mol. Struct. 2017, 1127, 653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVSrtb7K&md5=aa107fce15322126b9505b5909a418e3CAS |

[15]  C. Díaz-Urrutia, B. Sedai, K. C. Leckett, R. T. Baker, S. K. Hanson, ACS Sustainable Chem. Eng. 2016, 4, 6244.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  C. M. Agbale, M. H. Cardoso, I. K. Galyuon, O. L. Franco, Metallomics 2016, 8, 1159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFerurbL&md5=31a5ab75d1564433b95007eb63561017CAS |

[17]  Y. Yan, J. Y. Zhang, L. X. Ren, C. B. Tang, Chem. Soc. Rev. 2016, 45, 5232.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjtVCltrc%3D&md5=3b7b3e842de32eae68e2344ceace270eCAS |

[18]  S. P. Dash, A. K. Panda, S. Dhaka, S. Pasayat, A. Biswas, M. R. Maurya, P. K. Majhi, A. Crochet, R. Dinda, Dalton Trans. 2016, 45, 18292.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1ygtbrL&md5=708e4e8a8e669864a179728619271335CAS |

[19]  J. L. Segura, M. J. Mancheño, F. Zamora, Chem. Soc. Rev. 2016, 45, 5635.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVGit7vO&md5=673175f1191d1ddaf17db7106c30004bCAS |

[20]  D. Wang, S. M. Li, J. Q. Zheng, D. Y. Kong, X. J. Zheng, D. C. Fang, L. P. Jin, Inorg. Chem. 2017, 56, 984.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXisVWjtQ%3D%3D&md5=341a190a72b84e221d90ec2568803170CAS |

[21]  G. Consiglio, I. P. Oliveri, S. Failla, S. D. Bella, Inorg. Chem. 2016, 55, 10320.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFKisrfP&md5=de59f737d90c4148a65087a9f243242aCAS |

[22]  W. S. Huang, L. Chen, Z. J. Zheng, K. F. Yang, Z. Xu, Y. M. Cui, L. W. Xu, Org. Biomol. Chem. 2016, 14, 79272.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  J. Yang, Z. L. Yuan, G. Q. Yu, S. L. He, Q. H. Hu, Q. Wu, B. Jiang, G. Wei, J. Fluoresc. 2016, 26, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVWqur7E&md5=b418e1a0c5d4ad7426a358bb5a610a52CAS |

[24]  L. Nie, Q. Zhang, L. Hu, Y. M. Liu, Z. Q. Yan, Sens. Actuators, B 2017, 245, 314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXislygtb8%3D&md5=66c622bfff0be2f4c7cddcdd6fc5d196CAS |

[25]  Z. Parsaee, K. Mohammadi, M. Ghahramaninezhad, B. Hosseinzadeh, New J. Chem. 2016, 40, 10569.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFCjur3K&md5=45ed443c1f7b0ce0ea0f19c50e16f564CAS |

[26]  M. J. Niu, Z. Li, X. Li, X. Q. Huang, RSC Adv. 2016, 6, 98171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsF2nsbrN&md5=89edea08d9b838940380ed80e79adb3cCAS |

[27]  C. Djordjevic, G. L. Wampler, J. Inorg. Biochem. 1985, 25, 51.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtVGku7s%3D&md5=0658665e65b3e92d22cef6254be74fa2CAS |

[28]  S. Z. Du, J. Feng, X. M. Lu, G. Wang, Dalton Trans. 2013, 42, 9699.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFCitbs%3D&md5=afd86835aa154aab72583617fd681cabCAS |

[29]  J. Kuwahara, T. Suzuki, Y. Sugiura, Biochem. Biophys. Res. Commun. 1985, 129, 368.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXks1Cnu78%3D&md5=30d2436f8f564c5640b40092fff87ef8CAS |

[30]  A. Bishayee, A. Waghray, M. A. Patel, M. Chatterjee, Cancer Lett. 2010, 294, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlyitLo%3D&md5=ff5a2b6e6b9bd4145653d497a79c09b7CAS |

[31]  S. Y. Ebrahimipour, I. Sheikhshoaie, A. C. Kautz, M. Ameri, H. Pasban-Aliabadi, H. A. Rudbari, G. Bruno, C. Janiak, Polyhedron 2015, 93, 99.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtlOrtbY%3D&md5=40555834dc44388aa73e0b016962561cCAS |

[32]  Y. P. Cao, Q. L. Yi, H. M. Liu, H. X. Li, J. L. Zuo, Z. L. Yuan, Chin. J. Synth. Chem. 2015, 23, 1124.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  Bruker, SMART (Version 5.625) and SAINT (Version 6.01) 2007 (Bruker AXS Inc.: Madison, WI).

[34]  N. Walker, D. Stuart, Acta Crystallogr. Sect. A 1983, 39, 158.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  G. M. Sheldrick, SHELXS-97: A Program for Crystal Structure Solution 1997 (University of Göttingen: Göttingen).

[36]  G. M. Sheldrick, SHELXL-97: A Program for Crystal Structure Refinement 1997 (University of Göttingen: Göttingen).

[37]  C. K. Johnson, ORTEP, Report ORNL-5138 1976 (Oak Ridge National Laboratory: Oak Ridge, TN).

[38]  P. K. Sasmal, S. Saha, R. Majumdar, R. R. Dighe, A. R. Chakravarty, Inorg. Chem. 2010, 49, 849.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1altbnP&md5=343246ffac3295ada484c12f5a72813fCAS |

[39]  L. Bian, L. Z. Li, Q. F. Zhang, J. F. Dong, T. Xu, J. H. Li, J. M. Kong, Trans. Met. Chem. 2012, 37, 783.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWisLzF&md5=357fc0a363bab69ab9820ed3da11dd3dCAS |

[40]  G. H. Sheng, X. Han, Z. L. You, H. H. Li, H. L. Zhu, J. Coord. Chem. 2014, 67, 1760.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnvFCitbc%3D&md5=afe5c5f1a4d36b7e44c5d06bd3795c9eCAS |

[41]  P. K. Sasmal, A. K. Patra, M. Nethaji, A. R. Chakravarty, Inorg. Chem. 2007, 46, 11112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWisrrE&md5=3075997c65ee2467a88c1eaaa1b97eb7CAS |

[42]  P. K. Sasmal, R. Majumdar, R. R. Dighe, A. R. Chakravarty, Dalton Trans. 2010, 39, 7104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFyht7o%3D&md5=d93be4a13bc7e4711adaa6aa6734bab1CAS |

[43]  L. Habala, C. Bartel, G. Giester, M. A. Jakupec, B. K. Keppler, A. Rompel, J. Inorg. Biochem. 2015, 147, 147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmslOqt7Y%3D&md5=452889e45a3a2345df0b7c5aa2f90a2aCAS |

[44]  Y. P. Cao, Q. L. Yi, H. M. Liu, H. X. Li, J. L. Zuo, Z. L. Yuan, Chin. J. Zunyi Med. Univ. 2016, 39, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  W. Rui, X. Y. Tian, P. F. Zeng, W. M. Liu, P. Ying, H. C. Chen, J. Z. Lu, N. Yang, H. Y. Chen, Polyhedron 2016, 117, 803.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht12ksr7E&md5=b7e9add78298b592906d92326346961dCAS |