Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Dehydrogenative Coupling of Hydrosilanes and Alcohols by Alkali Metal Catalysts for Facile Synthesis of Silyl Ethers

Adimulam Harinath A , Jayeeta Bhattacharjee A , Srinivas Anga A and Tarun K. Panda A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India.

B Corresponding author. Email: tpanda@iith.ac.in

Australian Journal of Chemistry 70(6) 724-730 https://doi.org/10.1071/CH16537
Submitted: 25 September 2016  Accepted: 26 October 2016   Published: 25 November 2016

Abstract

Cross-dehydrogenative coupling (CDC) of hydrosilanes with hydroxyl groups, using alkali metal hexamethyldisilazide as a single-component catalyst for the formation of Si–O bonds under mild condition, is reported. The potassium salt [KN(SiMe3)2] is highly efficient and chemoselective for a wide range of functionalized alcohols (99 % conversion) under solvent-free conditions. The CDC reaction of alcohols with silanes exhibits first-order kinetics with respect to both catalyst and substrate concentrations. The most plausible mechanism for this reaction suggests that the initial step most likely involves the formation of an alkoxide followed by the formation of metal hydride as active species.


References

[1]  T. W. Greene, P. G. Wuts, Protective Groups in Organic Synthesis, 2nd edn, Vol. 23 1991 (John Wiley and Sons: New York, NY).

[2]  P. D. Lickiss, Adv. Inorg. Chem. 1995, 42, 147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovVSrsLc%3D&md5=73b62dbb7a7507aa67b3de5296f83591CAS |

[3]  (a) F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem., Int. Ed. 2006, 118, 3290.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) N. Mizoshita, T. Tani, S. Inagaki, Chem. Soc. Rev. 2011, 40, 789.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. Hoffmann, M. Froba, Chem. Soc. Rev. 2011, 40, 608.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  C. Lorenz, U. Schubert, Chem. Ber. 1995, 128, 1267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSlsbjM&md5=d7433c3f1d328e89eee95a304a1546a6CAS |

[5]  E. Pouget, J. Tonnar, P. Lucas, P. Lacroix-Desmazes, F. Ganachaud, B. Boutevin, Chem. Rev. 2010, 110, 1233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhtLrE&md5=28f14c897365168f823ac3418388d434CAS |

[6]  (a) S. Kim, H. Chang, Synth. Commun. 1984, 14, 899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtFWhtrs%3D&md5=cc4ee076639a04a167c9b364bb1f5e35CAS |
      (b) S. K. Chaudhary, O. Hernandez, Tetrahedron Lett. 1979, 20, 99.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  X. L. Luo, R. H. Crabtree, J. Am. Chem. Soc. 1989, 111, 2527.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsFCgurw%3D&md5=e2f61708fe8491d501e6b6fd76dae551CAS |

[8]  (a) S. Xin, J. F. Harrod, J. Organomet. Chem. 1995, 499, 181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnslylsb8%3D&md5=df5c74212e4911d9a86708332b3cae9eCAS |
      (b) T. C. Bedard, J. Y. Corey, J. Organomet. Chem. 1992, 428, 315.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. Peterson, A. Y. Khalimon, R. Simionescu, L. G. Kuzmina, J. A. K. Howard, G. I. Nikonov, J. Am. Chem. Soc. 2009, 131, 908.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) S. Vijjamarri, V. K. Chidara, J. Rousova, G. Du, Catal. Sci. Technol. 2016, 6, 3886.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XovVKksw%3D%3D&md5=d8bfd7aec5d71eeb851e8ce71c8a7129CAS |
      (b) B. T. Gregg, A. R. Cutler, Organometallics 1993, 12, 2006.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  R. A. Corbin, E. A. Ison, M. M. Abu-Omar, Dalton Trans. 2009, 2850.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslKjurw%3D&md5=6717bfc4571cf13ac3dffb6c9fb0d420CAS |

[11]  J. M. S. Cardoso, R. Lopes, B. Royo, J. Organomet. Chem. 2015, 775, 173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVCqt7%2FK&md5=1598a0fa1deb780330d941170a795ad6CAS |

[12]  (a) M. K. Chung, G. Ferguson, V. Robertson, M. Schlaf, Can. J. Chem. 2001, 79, 949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsVakt78%3D&md5=ec930c3fc56b5a57403342cc0eacee1fCAS |
      (b) S. V. Maifeld, R. L. Miller, D. Lee, Tetrahedron Lett. 2002, 43, 6363.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) A. Weickgenannt, M. Mewald, M. Oestreich, Org. Biomol. Chem. 2010, 8, 1497.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlamsL8%3D&md5=204281c825d176d2d09b3c0d00d7e363CAS |
      (b) R. J. P. Corriu, J. J. E. Moreau, J. Organomet. Chem. 1976, 120, 337.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) K. Garcés, F. J. Fernandez-Alvarez, V. Polo, R. Lalrempuia, J. J. Perez-Torrente, L. A. Oro, ChemCatChem 2014, 6, 1691.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. D. Field, B. A. Messerle, M. Rehr, L. P. Soler, T. W. Hambley, Organometallics 2003, 22, 2387.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) D. E. Barber, Z. Lu, T. Richardson, R. H. Crabtree, Inorg. Chem. 1992, 31, 4709.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtFamtbw%3D&md5=fd978aadf98cda26642aa18b01e04124CAS |
      (b) J. Ohshita, R. Taketsugu, Y. Nakahara, A. Kunai, J. Organomet. Chem. 2004, 689, 3258.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) H. Ito, A. Watanabe, M. Sawamura, Org. Lett. 2005, 7, 1869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFGksbg%3D&md5=11cc72bffcea74a3ba33d0607bcc0e9bCAS |
      (b) S. Rendler, G. Auer, M. Oestreich, Angew. Chem., Int. Ed. 2005, 44, 7620.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  H. Ito, K. Takagi, T. Miyahara, M. Sawamura, Org. Lett. 2005, 7, 3001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFSls7w%3D&md5=c9e3d02ac8b8fb9bc8ec83b5b5e59cc0CAS |

[18]  W. Caseri, P. S. Pregosin, Organometallics 1988, 7, 1373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXit1Wrur4%3D&md5=e9c708550e20438396d184f0ee5a66eeCAS |

[19]  (a) W. Sattler, G. Parkin, J. Am. Chem. Soc. 2012, 134, 17462.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOhsr7I&md5=f243069d031850851796d0205b0a77aeCAS |
      (b) D. Mukherjee, R. R. Thompson, A. Ellern, A. D. Sadow, ACS Catal. 2011, 1, 698.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  J. M. Blackwell, K. L. Foster, V. H. Beck, W. E. Piers, J. Org. Chem. 1999, 64, 4887.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFCqtLs%3D&md5=8de5678a51c45f7a5437b3feb1d89e01CAS |

[21]  D. Gao, C. Cui, Chem. – Eur. J. 2013, 19, 11143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFShsr%2FO&md5=57ff91ebaca6e71e9861cf5fef5777b0CAS |

[22]  S. Anga, Y. Sarazin, J. F. Carpentier, T. K. Panda, ChemCatChem 2016, 8, 1373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xisl2ntLo%3D&md5=bb8b0daade7fc9fa742ba0a74dd6de74CAS |

[23]  A. Harinath, S. Anga, T. K. Panda, RSC Adv. 2016, 6, 35648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmslKntb8%3D&md5=620673ef8ead836dbf5c97ff522f33e8CAS |

[24]  Crystal data for N (CCDC No. 1500840): C25H22OSi, M 366.51, monoclinic, space group P21, a 6.8092(5) Å, b 11.6553(7) Å, c 12.6565(9) Å, α 90°, β 99.921(8)°, γ 90°, V 989.44(12) Å3, Dc 1.230 g cm–3, Z 2, T 150 K, λ 1.54184 Å, μ 1.119 mm–1, 2θmax 70.6236°, R1 0.067, wR2 0.18 (I > 2σ(I)), GOF 1.168.

[25]  B. Crousse, L. H. Xu, G. Bernardinelli, E. P. Kündig, Synlett 1998, 1998, 658.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  D. J. Liptrot, M. S. Hill, M. F. Mahon, A. S. S. Wilson, Angew. Chem., Int. Ed. 2015, 54, 13362.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsV2nsrnO&md5=a5b8bf4a3f731a0bef7e9c9b8af8094bCAS |

[27]  (a) X. L. Zhang, H. Yamada, T. Saito, T. Kai, K. Murakami, M. Nakashima, J. Ohshita, K. Akamats, K. S. I. Nakao, J. Membr Sci. 2016, 499, 28.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslKgs7bI&md5=1816e93dd5bfcdea6291810ceb4ed804CAS |
      (b) L. D. Field, B. A. Messerle, M. Rehr, L. P. Soler, T. W. Hambley, Organometallics 2003, 22, 2387.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. A. Corbin, E. A. Ison, M. M. Abu-Omar, Dalton Trans. 2009, 2850.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. M. S. Cardoso, R. Lopes, B. Royo, J. Organomet. Chem. 2015, 775, 173.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) W. Caseri, P. S. Pregosin, Organometallics 1988, 7, 1373.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. M. Blackwell, K. L. Foster, V. H. Beck, W. E. Piers, J. Org. Chem. 1999, 64, 4887.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) R. Filler, J. Org. Chem. 1954, 19, 544.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) T. Baba, Y. Kawanami, H. Yuasa, S. Yoshida, Catal. Lett. 2003, 91, 31.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) A. Purkayshtha, J. B. Baruah, J. Mol. Catal. Chem. 2003, 198, 47.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) C. Ghosh, T. K. Mukhopadhyay, M. Flores, T. L. Groy, R. J. Trovitch, Inorg. Chem. 2015, 54, 10398.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) S. Vijjamarri, V. K. Chidara, J. Rousova, G. Du, Catal. Sci. Technol. 2016, 6, 3886.
         | Crossref | GoogleScholarGoogle Scholar |