Aptamer-Based Fluorescent Switch for Sensitive Detection of Oxytetracycline
Mahsa Babaei A H , Seyed Hamid Jalalian B C H , Hadi Bakhtiari C , Mohammad Ramezani D , Khalil Abnous A E I and Seyed Mohammad Taghdisi F G IA Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
B Department of Pharmaceutical Nanotechnology, Students Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
C Academic Center for Education, Culture and Research (ACECR)-Mashhad Branch, Mashhad, Iran.
D Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
E Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
F Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
G Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
H These authors contributed equally to the work.
I Corresponding authors. Email: abnouskh@mums.ac.ir; taghdisihm@mums.ac.ir
Australian Journal of Chemistry 70(6) 718-723 https://doi.org/10.1071/CH16562
Submitted: 3 October 2016 Accepted: 24 October 2016 Published: 16 November 2016
Abstract
Oxytetracycline (OTC) is one of the most used antibiotics in veterinary medicine. There is a large concern about developing antibiotic resistance in humans as a result of the consumption of products contaminated with OTC, so a fast detection technique for an on-field screening test is highly in demand. Here we introduce a novel aptasensor for fast detection of OTC, based on a triple helix molecular switch (THMS) complex formation. The limit of detection (LOD) of this sensor was 1.67 and 6.44 nM in phosphate buffer and milk samples, respectively. Moreover, the sensor showed a high selectivity towards OTC.
References
[1] P. R. Moore, A. Evenson, T. D. Luckey, E. McCoy, C. A. Elvehjem, E. B. Hart, J. Biol. Chem. 1946, 165, 437.| 1:CAS:528:DyaH2sXmtlWh&md5=aebf0981e77c0d183461529880e0131cCAS |
[2] G. G. Khachatourians, Can. Med. Assoc. J. 1998, 159, 1129.
| 1:STN:280:DyaK1M%2Flt1KjsQ%3D%3D&md5=38218d88e6ef1d0eddcf8a3db3b0c897CAS |
[3] M. I. Berruga, A. Molina, R. L. Althaus, M. P. Molina, Small Rumin. Res. 2016, 142, 38.
| Crossref | GoogleScholarGoogle Scholar |
[4] T. Frieden, Antibiotic Resistance Threats in the United States 2013 (Centers for Disease Control and Prevention, US Department of Health and Human Services: Atlanta, GA.
[5] (a) P. Viñas, N. Balsalobre, C. López-Erroz, M. Hernández-Córdoba, J. Chromatogr. A 2004, 1022, 125.
| Crossref | GoogleScholarGoogle Scholar |
(b) P. Kowalski, J. Pharm. Biomed. Anal. 2008, 47, 487.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. B. Gholivand, H. Khani, Electroanalysis 2013, 25, 461.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) S. Song, L. Wang, J. Li, C. Fan, J. Zhao, TrAC, Trends Anal. Chem. 2008, 27, 108.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVSit7g%3D&md5=1650bf64e864e39bd8778b8a8694f159CAS |
(b) Y. S. Kim, M. B. Gu, in Advances in Biochemical Engineering/Biotechnology (Eds Th. Scheper, S. Belkin, Th. Bley, J. Bohlmann, P. M. Doran, M. B. Gu, W.-S. Hu, B. Mattiasson, J. Nielsen, H. Seitz, R. Ulber, A.-P. Zeng, J.-J. Zhong, W. Zhou) 2014, pp. 29–67 (Springer: New York, NY).
(c) S. S. Sekhon, S. G. Kim, S. H. Lee, A. Jang, J. Min, J. Y. Ahn, Y. H. Kim, Mol. Cell. Toxicol. 2013, 9, 311.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) M. J. Raeisossadati, N. M. Danesh, F. Borna, M. Gholamzad, M. Ramezani, K. Abnous, S. M. Taghdisi, Biosens. Bioelectron. 2016, 86, 235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFSnsL7L&md5=e432cab40372b71e848fd75d285c4183CAS |
(b) J. Zhou, A. V. Ellis, H. Kobus, N. H. Voelcker, Anal. Chim. Acta 2012, 719, 76.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Li, K.-W. Chang, C.-H. Wang, C.-H. Yang, S.-C. Shiesh, G.-B. Lee, Biosens. Bioelectron. 2016, 79, 887.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) S. M. Taghdisi, K. Abnous, F. Mosaffa, J. Behravan, J. Drug Target. 2010, 18, 277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Wnt7Y%3D&md5=26abd8ecf45a632fc1aedc6194a9a0f3CAS |
(b) S. M. Taghdisi, P. Lavaee, M. Ramezani, K. Abnous, Eur. J. Pharm. Biopharm. 2011, 77, 200.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Yazdian-Robati, M. Ramezani, S. H. Jalalian, K. Abnous, S. M. Taghdisi, Pharm. Res. 2016, 33, 2289.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Alibolandi, M. Mohammadi, S. M. Taghdisi, M. Ramezani, K. Abnous, Carbohydr. Polym. 2017, 155, 218.
| Crossref | GoogleScholarGoogle Scholar |
[9] M. Blank, M. Blind, Curr. Opin. Chem. Biol. 2005, 9, 336.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVOrsrk%3D&md5=995a02019f9ebf547ed92e9abe7f2803CAS |
[10] (a) Y. Huo, L. Qi, X.-J. Lv, T. Lai, J. Zhang, Z.-Q. Zhang, Biosens. Bioelectron. 2016, 78, 315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFantb3E&md5=eae2803d4fb8b52949b8799ec875d648CAS |
(b) X. Lin, K.-H. Leung, L. Lin, L. Lin, S. Lin, C.-H. Leung, D.-L. Ma, J.-M. Lin, Biosens. Bioelectron. 2016, 79, 41.
| Crossref | GoogleScholarGoogle Scholar |
[11] Y. Lu, J. Liu, Curr. Opin. Biotechnol. 2006, 17, 580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eqs7%2FN&md5=f91d0752df0407cd046cd624d1ab38d8CAS |
[12] (a) C. Feng, S. Dai, L. Wang, Biosens. Bioelectron. 2014, 59, 64.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotlynu7c%3D&md5=3e0907171f2d4613e64256cc61c79d9eCAS |
(b) K. L. Hong, L. J. Sooter, BioMed Res. Int. 2015, 2015, 31.
(c) K. Wang, J. Huang, X. Yang, X. He, J. Liu, Analyst 2013, 138, 62.
| Crossref | GoogleScholarGoogle Scholar |
[13] A. Rhouati, C. Yang, A. Hayat, J.-L. Marty, Toxins 2013, 5, 1988.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntVOhu7s%3D&md5=b929111db6446c873569a1fe5b908fc7CAS |
[14] M. Hosseini, F. Mehrabi, M. R. Ganjali, P. Norouzi, Luminescence 2016, 31, 1339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsF2msrnL&md5=2b1ac63a3f2e0cd892771f0fb5dd7b6eCAS |
[15] K. Kim, M. B. Gu, D. H. Kang, J. W. Park, I. H. Song, H. S. Jung, K. Y. Suh, Electrophoresis 2010, 31, 3115.
| Crossref | GoogleScholarGoogle Scholar |
[16] C. Fang, S. Wu, N. Duan, S. Dai, Z. Wang, Anal. Methods 2015, 7, 2585.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFertL4%3D&md5=9161abc7411e99b170572a65a2116544CAS |
[17] (a) M. A. Nameghi, N. M. Danesh, M. Ramezani, F. V. Hassani, K. Abnous, S. M. Taghdisi, Anal. Bioanal. Chem. 2016, 408, 5811.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVWltbjN&md5=58ae83b555a652f8cf117a713757325fCAS |
(b) L. He, Y. Luo, W. Zhi, Y. Wu, P. Zhou, Aust. J. Chem. 2013, 66, 485.
| Crossref | GoogleScholarGoogle Scholar |
[18] K. Wang, Z. Tang, C. J. Yang, Y. Kim, X. Fang, W. Li, Y. Wu, C. D. Medley, Z. Cao, J. Li, P. Colon, H. Lin, W. Tan, Angew. Chem. Int. Ed. 2009, 48, 856.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1yhtbw%3D&md5=f0d63fdaa3b8800f4acdf5c9e9fdbdc5CAS |
[19] N. Li, C. M. Ho, J. Am. Chem. Soc. 2008, 130, 2380.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKlsLY%3D&md5=f001278047cca1723d37ec81d7389786CAS |
[20] S. H. Jalalian, S. M. Taghdisi, N. M. Danesh, H. Bakhtiari, P. Lavaee, M. Ramezani, K. Abnous, Anal. Methods 2015, 7, 2523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXit1Cqur8%3D&md5=adc87babaaa4c963db755648fd20f33eCAS |
[21] J. H. Niazi, S. J. Lee, Y. S. Kim, M. B. Gu, Bioorg. Med. Chem. 2008, 16, 1254.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVWhurY%3D&md5=9db30a4d454e6177a7ff568542a11312CAS |
[22] J. Zheng, J. Li, Y. Jiang, J. Jin, K. Wang, R. Yang, W. Tan, Anal. Chem. 2011, 83, 6586.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWhtLrJ&md5=2a62c746651630381446119242356996CAS |
[23] A. B. Pradhan, S. Das, L. Haque, S. Bhuiya, S. Das, J. Lumin. 2016, 169, 277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFyqtr7N&md5=818f24246f5dcfa6edd8127f4d699b8dCAS |
[24] (a) J. Noeske, H. Schwalbe, J. Wöhnert, Nucleic Acids Res. 2007, 35, 5262.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFWgsb8%3D&md5=8585a76517b3f49d714dd943227da1f8CAS |
(b) F. Wei, C. M. Ho, Anal. Bioanal. Chem. 2009, 393, 1943.
| Crossref | GoogleScholarGoogle Scholar |
[25] A. K. Lykkeberg, B. Halling-Sørensen, C. Cornett, J. Tjørnelund, S. Honoré Hansen, J. Pharm. Biomed. Anal. 2004, 34, 325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFarsw%3D%3D&md5=a9eb226d6f5219a1a452d8356b9b4715CAS |
[26] J. Tong, Q. Rao, K. Zhu, Z. Jiang, S. Ding, J. Sep. Sci. 2009, 32, 4254.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Wis7k%3D&md5=1d83393de1250a5635461133d4a2ad07CAS |
[27] J. Kurittu, S. Lonnberg, M. Virta, M. Karp, J. Agric. Food Chem. 2000, 48, 3372.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1els70%3D&md5=1b5aa564f0906e19d67902b4256525afCAS |
[28] U. Körner, M. Kühne, S. Wenzel, Food Addit. Contam. 2001, 18, 293.
| Crossref | GoogleScholarGoogle Scholar |
[29] Y. Guo, L. Meng, Y. Zhang, W. Tang, W. Zhang, Y. Xia, F. Ban, N. Wu, S. Zhang, J. Chromatogr. B 2013, 942–943, 151.
| Crossref | GoogleScholarGoogle Scholar |