Interpenetrated Double Pillared-Layer CoII MOFs with pcu Topology*
In-Hyeok Park A , Yunji Kang A , Eunji Lee A , Anjana Chanthapally B , Shim Sung Lee A C and Jagadese J. Vittal B CA Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea.
B Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 11753, Republic of Singapore.
C Corresponding authors. Email: sslee@gnu.ac.kr; chmjjv@nus.edu.sg
Australian Journal of Chemistry 70(5) 461-467 https://doi.org/10.1071/CH16438
Submitted: 27 July 2016 Accepted: 18 September 2016 Published: 14 October 2016
Abstract
Three double pillared-layer CoII metal–organic frameworks (MOFs) with a pcu topology of a long, conformationally flexible, dipyridyl spacer ligand, 1,4-bis[2-(4-pyridyl)ethenyl]benzene (bpeb), and aromatic dicarboxylates (1,4-benzenedicarboxylate (bdc), 2,6-naphthalenedicarboxylate (ndc), and biphenyl-4,4′-dicarboxylate (bpdc)) have been synthesised and structurally characterised by X-ray crystallography. The MOFs are denoted as [Co2(bpeb)2(bdc)2]·DMF·3H2O (1), [Co2(bpeb)2(ndc)2]·1.75DMF·3.75H2O (2), and [Co2(bpeb)2(bpdc)2]·3.5DMF·4H2O (3). In the dinuclear repeating unit, four carboxylates are bonded to two CoII atoms forming a (4,4) layer structure. The axial positions are occupied by bpeb ligands. Of these, 1 and 2 have 2-fold interpenetration, whereas 3 displays 3-fold interpenetration. The two bpeb space ligands in 1 have trans,trans,trans and trans,cis,trans conformations. In contrast, the bpeb ligands in 2 and 3 have a trans,cis,trans conformation. Although the olefin groups in two adjacent bpeb ligands, as the double pillars in 2 and 3, satisfy the conditions for photo-dimerisation to occur, they are photo-inactive. The conformational changes of bpeb, bonding modes of the dicarboxylates, and pore sizes in these double pillared-layer compounds have been discussed.
References
[1] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi, Science 2002, 295, 469.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyrtLjP&md5=f957e6eab57ea29853f296fbc058786aCAS | 11799235PubMed |
[2] O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddoudi, J. Kim, Nature 2003, 423, 705.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksV2itro%3D&md5=ad98eff58c36ca09196dc5e9aca0fdd5CAS | 12802325PubMed |
[3] A. Phan, C. J. Donnan, F. J. Urbe-Romo, C. B. Knobler, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2010, 43, 58.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlegu77O&md5=546abb3c36fb7e9d6f443afd2a5146c3CAS | 19877580PubMed |
[4] J. W. Brown, B. L. Henderson, M. D. Kiesz, A. C. Whalley, W. Morris, S. Grunder, H. Deng, H. Furukawa, J. I. Zink, J. F. Stoddart, O. M. Yaghi, Chem. Sci. 2013, 4, 2858.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXos1yqtrY%3D&md5=1418bdd845d957ed899ec3daedb274a6CAS |
[5] Y. Houndonougbo, C. Signer, N. He, W. Morris, H. Furukawa, K. G. Ray, D. L. Olmsted, M. Asta, B. B. Laird, O. M. Yaghi, J. Phys. Chem. C 2013, 117, 10326.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlslahtLY%3D&md5=af0604c30f0b05e4850ebbbe85861e05CAS |
[6] L. Ma, J. M. Falkowski, C. Abney, W. Lin, Nat. Chem. 2010, 2, 838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2msL7M&md5=ec3bf0541c706c35748f245a1ed96283CAS | 20861899PubMed |
[7] H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi, Science 2012, 336, 1018.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1Kgt7s%3D&md5=2e2625b1941f730fc36e2f438f645443CAS | 22628651PubMed |
[8] F. Song, C. Wang, J. M. Falkowski, L. Ma, W. Lin, J. Am. Chem. Soc. 2010, 132, 15390.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KrsL7O&md5=afcc0641b3c354e58c7b83483272a0ecCAS | 20936862PubMed |
[9] D. Zhao, D. J. Timmons, D. Yuan, H. C. Zhou, Acc. Chem. Res. 2011, 44, 123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2ksbfO&md5=a610a91a44faeee1a7ade08b94e80fc5CAS | 21126015PubMed |
[10] H. Zhang, T. Sheng, S. Hu, C. Zhuo, H. Li, R. Fu, Y. Wen, X. Wu, Cryst. Growth Des. 2016, 16, 3154.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xmt12ntL0%3D&md5=ad29752e4400c0f106e530fe8b1e212eCAS |
[11] X.-L. Hu, F.-H. Liu, H.-N. Wang, C. Qin, C.-Y. Sun, Z.-M. Su, F.-C. Liu, J. Mater. Chem. A 2014, 2, 14827.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVylsr3E&md5=69925cf4b4a7edc413675afab44a99e2CAS |
[12] I.-H. Park, R. Medishetty, H.-H. Lee, T. S. Herng, J. Ding, S. S. Lee, J. J. Vittal, Cryst. Growth Des. 2015, 15, 4156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1antbnK&md5=80424db3931f3afff2f485d786417616CAS |
[13] I.-H. Park, A. Chanthapally, H.-H. Lee, H. S. Quah, S. S. Lee, J. J. Vittal, Chem. Commun. 2014, 50, 3665.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktF2rtbg%3D&md5=495e7f01da97188ffb872af554272a9bCAS |
[14] I.-H. Park, K. Kim, S. S. Lee, J. J. Vittal, Cryst. Growth Des. 2012, 12, 3397.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1Oksro%3D&md5=57fc0bf0ff43c767dfa1140f3fe78108CAS |
[15] X.-G. Guo, W.-B. Yang, X.-Y. Wu, Q.-K. Zhang, L. Lin, R. M. Yu, C.-Z. Lu, CrystEngComm 2013, 15, 3654.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvFWhsL4%3D&md5=f26d3b0f05f286fb33b7547699265d55CAS |
[16] Y. Gong, J. Li, P.-G. Jiang, Q.-F. Li, J.-H. Lin, Dalton Trans. 2013, 42, 1603.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOmsA%3D%3D&md5=f46544f9cbcdc175b5f5a670e69d9e80CAS | 23143527PubMed |
[17] L. R. MacGillivray, J. L. Reid, J. A. Ripmeester, J. Am. Chem. Soc. 2000, 122, 7817.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltF2is78%3D&md5=18967c34f5fdbde89427d1c6d4f393e3CAS |
[18] D. Liu, Z.-G. Ren, H.-X. Li, J.-P. Lang, N.-Y. Li, B. F. Abrahams, Angew. Chem., Int. Ed. 2010, 49, 4767.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVCgtbg%3D&md5=ae92fce3a0fcfc6c7df234f34b7a78c4CAS |
[19] I.-H. Park, A. Chanthapally, Z. Zhang, S. S. Lee, M. J. Zaworotko, J. J. Vittal, Angew. Chem., Int. Ed. 2014, 53, 414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSku7fL&md5=30509abfdb0374810c5ee460242d2162CAS |
[20] I.-H. Park, R. Medishetty, S. S. Lee, J. J. Vittal, Chem. Commun. 2014, 50, 6585.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptVakt7Y%3D&md5=dc2c9dcdd06b93dcf46285ff79fc1edfCAS |
[21] I.-H. Park, C. E. Mulijanto, H.-H. Lee, Y. Kang, E. Lee, A. Chanthapally, S. S. Lee, J. J. Vittal, Cryst. Growth Des. 2016, 16, 2504.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XlvV2isbY%3D&md5=a07fa5dc48c198e2510d9b684928dbc7CAS |
[22] D. Liu, H.-X. Li, L.-L. Liu, H.-M. Wang, N.-Y. Li, Z.-G. Rena, J.-P. Lang, CrystEngComm 2010, 12, 3708.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGhtLzP&md5=90f5e851fbdf6fa835e68f2e6fba2819CAS |
[23] D. Liu, Y.-J. Chang, J.-P. Lang, CrystEngComm 2011, 13, 1851.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt12hsr0%3D&md5=cbdf4e50cedcd009ad4fe4681deadbebCAS |
[24] I.-H. Park, S. S. Lee, J. J. Vittal, Chem. – Eur. J. 2013, 19, 2695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnt1Sisg%3D%3D&md5=0eaf9a4c0f9e6fb55198a3fab6e219ddCAS | 23303617PubMed |
[25] I.-H. Park, R. Medishetty, J.-Y. Kim, S. S. Lee, J. J. Vittal, Angew. Chem., Int. Ed. 2014, 53, 5591.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVCmsrY%3D&md5=1c2b37a74d74d413b690cea65ffb21f8CAS |
[26] I.-H. Park, R. Medishetty, H.-H. Lee, C. E. Mulijanto, H. S. Quah, S. S. Lee, J. J. Vittal, Angew. Chem., Int. Ed. 2015, 54, 7313.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvFSrsbo%3D&md5=9e0d6ddee14f91e6332da79910bbe89fCAS |
[27] A. L. Spek, PLATON, A Multipurpose Crystallographic Tool 2003 (University of Ultrecht: Ultrecht, The Netherlands).
[28] G. M. J. Schmidt, Pure Appl. Chem. 1971, 27, 647.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XlvVCjsA%3D%3D&md5=875c2ce7358ab62ca9341adc65de5f08CAS |
[29] V. A. Blatov, Struct. Chem. 2012, 23, 955.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFKksrY%3D&md5=27b3407d7934eef91487f66d8ba9a7b0CAS |
[30] V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Cryst. Growth Des. 2014, 14, 3576.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovVSjs70%3D&md5=e0efb5155b20989a2a0034dd12c341d7CAS |
[31] A. Chanthapally, W. T. Oh, J. J. Vittal, Chem. Commun. 2014, 50, 451.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVyqs7%2FF&md5=779638c85117287b370d845ddd8b033cCAS |
[32] A. M. P. Peedikakkal, J. J. Vittal, Chem. – Eur. J. 2008, 14, 5329.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFGksL8%3D&md5=898022c30854cdbc4f0e820116e74570CAS |
[33] S. Ohba, H. Hosomi, Y. Ito, J. Am. Chem. Soc. 2001, 123, 6349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFersrw%3D&md5=4c6aa30fab31b9adb10fb2b966239df1CAS | 11427059PubMed |
[34] A. M. P. Peedikakkal, Y.-M. Song, R.-G. Xiong, S. Gao, J. J. Vittal, Eur. J. Inorg. Chem. 2010, 3856.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCntr%2FK&md5=f2315042869fe117fa5a9b02ce4b5441CAS |
[35] A. Briceno, D. Leal, R. Atencio, G. Diaz de Delgado, Chem. Commun. 2006, 3534.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xotl2ns7s%3D&md5=dee8055667dc6898221376a588d36c11CAS |
[36] Y. Hill, A. Briceno, Chem. Commun. 2007, 3930.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyjtrvP&md5=01f404f8f662fcb6c876e54f45aada28CAS |
[37] M.-H. Xie, X.-L. Yang, C.-D. Wu, Chem. – Eur. J. 2011, 17, 11424.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCnt7nI&md5=3c04afffbdd3f72e403bd370081d6625CAS | 21905132PubMed |
[38] Y.-C. Ou, D.-S. Zhi, W.-T. Liu, Z.-P. Ni, M.-L. Tong, Chem. – Eur. J. 2012, 18, 7357.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1ektL8%3D&md5=c7a64bef070be135d1dbc926b7c93c02CAS | 22565591PubMed |
[39] J. F. Eubank, V. C. Kravtsov, M. Eddaoudi, J. Am. Chem. Soc. 2007, 129, 5820.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Knurk%3D&md5=e22ecba0fa013d484aec690db6ec5aebCAS | 17439130PubMed |
[40] Y.-F. Han, Y.-J. Lin, W.-G. Jia, G.-L. Wang, G.-X. Jin, Chem. Commun. 2008, 1807.
| Crossref | GoogleScholarGoogle Scholar |
[41] I.-H. Park, R. Medishetty, H.-H. Lee, T. S. Herng, J. Ding, S. S. Lee, J. J. Vittal, Cryst. Growth Des. 2015, 15, 4156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1antbnK&md5=80424db3931f3afff2f485d786417616CAS |
[42] M. H. Mir, S. Kitagawa, J. J. Vittal, Inorg. Chem. 2008, 47, 7728.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVGjtr8%3D&md5=8ecd8e37f30aa8c8cf60104e44adce61CAS | 18661972PubMed |
[43] A. Chanthapally, G. K. Kole, K. Qian, G. K. Tan, S. Gao, J. J. Vittal, Chem. – Eur. J. 2012, 18, 7869.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFertLk%3D&md5=cbe15540ee446f09a190073e7e48d512CAS | 22544442PubMed |
[44] A. V. Gutov, E. B. Rusanov, L. V. Chepeleva, S. G. Garasevich, A. B. Ryabitskii, A. N. Chernega, Russ. J. Gen. Chem. 2009, 79, 1513.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SqurvP&md5=0bfd5697fca62d59d1b39e05b528d15eCAS |
[45] Bruker, APEX2 Version 2009.1–0 Data Collection and Processing Software 2008 (Bruker AXS Inc.: Madison, WI).
[46] Bruker, SHELXTL-PC Version 6.22 Program for Solution and Refinement of Crystal Structures 2001 (Bruker AXS Inc.: Madison, WI).